自激式涡流控制水力振荡器研制与应用

聂云飞, 朱渊, 范萧, 赵传伟, 张辉

聂云飞, 朱渊, 范萧, 赵传伟, 张辉. 自激式涡流控制水力振荡器研制与应用[J]. 石油钻探技术, 2019, 47(5): 74-79. DOI: 10.11911/syztjs.2019080
引用本文: 聂云飞, 朱渊, 范萧, 赵传伟, 张辉. 自激式涡流控制水力振荡器研制与应用[J]. 石油钻探技术, 2019, 47(5): 74-79. DOI: 10.11911/syztjs.2019080
NIE Yunfei, ZHU Yuan, FAN Xiao, ZHAO Chuanwei, ZHANG Hui. Development and Application of Self-Excited Vortex Control Hydraulic Oscillator[J]. Petroleum Drilling Techniques, 2019, 47(5): 74-79. DOI: 10.11911/syztjs.2019080
Citation: NIE Yunfei, ZHU Yuan, FAN Xiao, ZHAO Chuanwei, ZHANG Hui. Development and Application of Self-Excited Vortex Control Hydraulic Oscillator[J]. Petroleum Drilling Techniques, 2019, 47(5): 74-79. DOI: 10.11911/syztjs.2019080

自激式涡流控制水力振荡器研制与应用

基金项目: 中国海洋石油集团有限公司科技攻关项目“北部湾油田经济开发钻完井技术研究”之课题“特殊井身结构完井及防砂工艺研究”资助
详细信息
    作者简介:

    聂云飞(1975—),男,山东广饶人,1997年毕业于青岛大学机械设计专业,2005年获中国石油大学(华东)机械电子工程专业硕士学位,工程师,主要从事石油钻井工具方面的研究工作。E-mail: nyfnyf2004@163.com

  • 中图分类号: TE921+.2

Development and Application of Self-Excited Vortex Control Hydraulic Oscillator

  • 摘要:

    自激式涡流控制水力振荡器具有无易损件、制造成本低和压降小的优点,可减小钻进过程中的摩阻,降低压差卡钻的可能性,改善钻压传递效果,提高机械钻速。为了解决大位移井、长水平段水平井钻井过程中的高摩阻问题,研制了自激式涡流控制水力振荡器。该振荡器由稳态射流元件和涡流可变液阻区2部分组成,主要利用射流的附壁效应和特定的流道形式产生周期性涡流,以产生轴向振荡。采用二维平面模型,基于计算流体动力学方法,采用数值模拟方法,分析了自激式涡流控制水力振荡器内部的流动状态和其性能参数与入口流量的关系。数值模拟结果表明,自激式涡流控制水力振荡器的主要性能参数压力脉动幅值与入口流量呈平方关系,压力脉动频率与入口流量呈线性关系。现场应用表明,自激式涡流控制水力振荡器不仅能显著提高机械钻速,而且不会对随钻测量工具产生影响,具有结构简单、功能可靠和工作特性优良的特点。

    Abstract:

    An autonomous self-excited vortex control hydraulic oscillator has the advantage of having no degrading parts, a low manufacturing cost and small pressure drop, which can reduce the friction during drilling and thus reduce the possibility of getting stuck, thus optimizing WOB transmission and increasing the ROP. In order to solve the problem of high levels of friction during drilling of extended reach wells and long horizontal section horizontal wells, a self-excited vortex control hydraulic oscillator was developed, which consists of a steady-state jet element and a vortex variable liquid resistance zone. In principle, it mainly uses the Coanda effect of the jet and a specific flow path form to generate periodic vortex, so as to produce axial oscillations. By using a 2D numerical model, the flow state inside the self-excited vortex control hydraulic oscillator and the relationship between its performance parameters and the inlet flow rate were analyzed based the computational fluid dynamics method. The numerical simulation analysis shows that the main performance parameter of the oscillator, pressure pulsation amplitude, exhibits a square relationship with the inlet flow, and pressure pulsation frequency has a linear relationship with the inlet flow. Field applications show that the autonomous, self-triggering vortex control hydraulic oscillator can not only significantly improve the ROP, but also has no impact on MWD tools. It possesses the characteristics of simple structure, reliable function and excellent working performance.

  • 图  1   自激式涡流控制水力振荡器的内部结构

    Figure  1.   Internal structure of self-excited vortex control hydraulic oscillator

    图  2   压力脉动单周期液流方向

    Figure  2.   The direction of pressure pulsation single cycle flow

    图  3   自激式涡流控制水力振荡器的二维平面模型

    Figure  3.   2D plane model of self-excited vortex controlhydraulic oscillator

    图  4   数值分析与试验结果的对比

    Figure  4.   Comparison on the numerical analysis and experimental test results

    图  5   压力脉动单周期流场流速变化示意

    Figure  5.   Schematic diagram of pressure fluctuations in a single-cycle flow field

    图  6   自激式涡流控制水力振荡器出口压力的变化情况

    Figure  6.   Outlet pressure variation of the self-excited vortex control hydraulic oscillator

    图  7   不同入口流量下自激式涡流控制水力振荡器出口压力的变化情况

    Figure  7.   Outlet pressure variation of autonomous, self-excited vortex control hydraulic oscillator under different inlet flow rates

    图  8   压力脉动辐值与入口流量的关系曲线

    Figure  8.   Relationship curve between pressure pulsation amplitude and inlet flow rate

    图  9   压力脉动频率与入口流量的关系曲线

    Figure  9.   Relationship curve between pressure pulsation frequency and inlet flow rate

    表  1   不同流量下出口压力的脉动辐值和脉动频率

    Table  1   Amplitude and frequency under different inlet flow

    流量/(L·s–1压力脉动辐值/MPa压力脉动频率/Hz
    9.70.504.58
    14.81.306.50
    19.42.258.00
    24.73.5011.00
    29.15.0013.10
    34.97.2015.70
    38.88.9017.40
    下载: 导出CSV

    表  2   自激式涡流控制水力振荡器现场应用情况

    Table  2   Field application of self-excited vortex control hydraulic oscillator

    井号应用层位井段/m进尺/m机械钻速/(m·h–1是否使用水力振荡器使用时间/h
    D43–X601井明化镇组、沙河街组369.00~2 654.002 285.0011.50
    D43–X508井403.00~2 635.002 232.0017.70126
    LX72井东营组、沙河街组2 923.00~3 582.00659.005.40
    LX73井2 930.00~3 577.00647.007.90 82
    下载: 导出CSV
  • [1]

    SAMUEL R. Friction factors: what are they for torque, drag, vibration, bottom hole assembly and transient surge/swab analyses?[J]. Journal of Petroleum Science and Engineering, 2010, 73(3/4): 258–266.

    [2] 王鹏, 倪红坚, 王瑞和, 等. 调制式振动对大斜度井减摩阻影响规律[J]. 中国石油大学学报(自然科学版), 2014, 38(4): 93–97. doi: 10.3969/j.issn.1673-5005.2014.04.013

    WANG Peng, NI Hongjian, WANG Ruihe, et al. Influence laws of modulated vibration on friction reduction in inclined-wells[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(4): 93–97. doi: 10.3969/j.issn.1673-5005.2014.04.013

    [3] 孔令镕,王瑜,邹俊,等. 水力振荡减阻钻进技术发展现状与展望[J]. 石油钻采工艺, 2019, 41(1): 23–30.

    KONG Lingrong, WANG Yu, ZOU Jun, et al. Development status and prospect of hydro-oscillation drag reduction drilling technology[J]. Oil Drilling & Production Technology, 2019, 41(1): 23–30.

    [4] 余长柏,黎明,刘洋,等. 水力振荡器振动特性的影响因素[J]. 断块油气田, 2016, 23(6): 842–845.

    YU Changbai,LI Ming,LIU Yang,et al. Influence factors on vibration characteristics of hydraulic oscillator[J]. Fault-Block Oil & Gas Field, 2016, 23(6): 842–845.

    [5]

    SOLA K I, LUND B. New downhole tool for coiled tubing extended reach[R].SPE 60701, 2000.

    [6]

    BARTON, S P, BAEZ F, ALALI A. Drilling performance improvements in gas shale plays using a novel drilling agitator device[R]. SPE 144416, 2011.

    [7] 明瑞卿, 张时中, 王海涛, 等. 国内外水力振荡器的研究现状及展望[J]. 石油钻探技术, 2015, 43(5): 116–122.

    MING Ruiqing, ZHANG Shizhong, WANG Haitao, et al. Research status and prospect of hydraulic oscillator worldwide[J]. Petroleum Drilling Techniques, 2015, 43(5): 116–122.

    [8] 于冰. 水力振荡冲击器设计及应用研究[D]. 大庆: 东北石油大学, 2017.

    YU Bing. Design and application of hydraulic oscillator impactor[D]. Daqing: Northeast Petroleum University, 2017.

    [9] 肖占朋, 杨琳, 李忠飞. 水力振荡器在塔中地区水平井中的应用[J]. 天然气勘探与开发, 2017, 40(2): 91–94.

    XIAO Zhanpeng, YANG Lin, LI Zhongfei. Application of hydraulic oscillator to horizontal wells in Tazhong Area,the Tarim Basin[J]. Natural Gas Exploration and Development, 2017, 40(2): 91–94.

    [10] 柳鹤,冯强,周俊然,等. 射流式水力振荡器振动频率分析与现场应用[J]. 石油机械, 2016, 44(1): 20–24.

    LIU He, FENG Qiang, ZHOU Junran, et al. Vibration frequency analysis of jetting hydraulic oscillator[J]. China Petroleum Machinery, 2016, 44(1): 20–24.

    [11] 陈涛,冉照辉,罗亮,等. 苏77–21–40H2 水平井超长水平段钻井技术[J]. 石油钻采工艺, 2015, 37(6): 1–4.

    CHEN Tao, RAN Zhaohui, LUO Liang, et al. Drilling technology for ultra-long horizontal section of horizontal well Su 77-21-40H2[J]. Oil Drilling & Production Technology, 2015, 37(6): 1–4.

    [12] 李典伟,杨忠福,邸百英,等. 伊拉克鲁迈拉油田S形定向井降摩减扭技术[J]. 石油钻探技术, 2016, 44(5): 22–27.

    LI Dianwei, YANG Zhongfu, DI Baiying, et al. Drag and torque reducing techniques on S-shaped directional wells of the Rumaila Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(5): 22–27.

    [13]

    SCHULTZ R L, CONNELL M L, FERGUSON A M. Vortex controlled variable flow resistance device and related tools and methods: US 9212522[P]. 2011-05-18.

    [14]

    MCCARTHY J P, STANES B H, REBELLON J E, et al. A step change in drilling efficiency: quantifying the effects of adding an axial oscillation tool with in challenging wellbore environments[R]. SPE 119958, 2009.

    [15] 吴志勇, 李军, 倪红坚, 等. 水力振荡器性能影响因素研究[J]. 石油机械, 2018, 46(3): 7–11.

    WU Zhiyong, LI Jun, NI Hongjian, et al. Research on the influencing factors of performance of hydraulic oscillator[J]. China Petroleum Machinery, 2018, 46(3): 7–11.

    [16] 吕克华, 邹志钢. 影响水力振荡器工作性能因素分析[J]. 钻采工艺, 2018, 41(1): 78–80. doi: 10.3969/J.ISSN.1006-768X.2018.01.24

    LYU Kehua, ZOU Zhigang. Analysis on factors affecting working performance of hydraulic oscillator[J]. Drilling & Production Technology, 2018, 41(1): 78–80. doi: 10.3969/J.ISSN.1006-768X.2018.01.24

  • 期刊类型引用(10)

    1. 胜亚楠. 基于井下参数测量的钻柱运动特征及异常状态分析方法. 石油地质与工程. 2024(02): 108-111+126 . 百度学术
    2. 肖立志,罗嗣慧,龙志豪. 井场核磁共振技术及其应用的发展历程与展望. 石油钻探技术. 2023(04): 140-148 . 本站查看
    3. 朱柏宇,陈恭洋,毛敏,程乐利,杨毅,袁胜斌. 录井基础实验平台建设与应用. 录井工程. 2022(01): 1-10 . 百度学术
    4. 韩忠勤. 浅议地质录井技术在煤层气地质勘探中的运用. 冶金管理. 2021(03): 87-88 . 百度学术
    5. 韩忠勤. 数字测井技术在煤田地质勘探中的应用分析. 当代化工研究. 2021(10): 87-88 . 百度学术
    6. 张吉亮. 浅谈煤层气勘探井录井技术方法. 地质装备. 2020(03): 31-32+21 . 百度学术
    7. 刘开绪,吴春梅,马骏驰,郝健,王冰茜. 综合录井仪电导率传感器现场检定装置设计. 仪表技术与传感器. 2020(06): 50-54 . 百度学术
    8. 杨志升. 石油地质与录井的相互影响与协调. 中国石油和化工标准与质量. 2019(06): 116-117 . 百度学术
    9. 王磊,万亚旗. 科威特市场录井装备及高端技术服务发展思考. 录井工程. 2019(04): 102-104+111+149-150 . 百度学术
    10. 张新华,佘明军,王舒,夏杰. 激光技术在录井工程中的应用进展及展望. 石油钻探技术. 2018(06): 111-117 . 本站查看

    其他类型引用(0)

图(9)  /  表(2)
计量
  • 文章访问数:  1104
  • HTML全文浏览量:  543
  • PDF下载量:  87
  • 被引次数: 10
出版历程
  • 收稿日期:  2018-08-21
  • 修回日期:  2019-08-21
  • 网络出版日期:  2019-08-30
  • 刊出日期:  2019-08-31

目录

    /

    返回文章
    返回