压裂井组非线性渗流模型求解

黄迎松

黄迎松. 压裂井组非线性渗流模型求解[J]. 石油钻探技术, 2019, 47(6): 96-102. DOI: 10.11911/syztjs.2019078
引用本文: 黄迎松. 压裂井组非线性渗流模型求解[J]. 石油钻探技术, 2019, 47(6): 96-102. DOI: 10.11911/syztjs.2019078
HUANG Yingsong. Solution of Nonlinear Seepage Model for Fracture Well Groupin Low Permeability Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(6): 96-102. DOI: 10.11911/syztjs.2019078
Citation: HUANG Yingsong. Solution of Nonlinear Seepage Model for Fracture Well Groupin Low Permeability Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(6): 96-102. DOI: 10.11911/syztjs.2019078

压裂井组非线性渗流模型求解

基金项目: 中国石化科技攻关项目“薄互层低渗透油藏井网适配提高采收率技术研究”(编号:P15034)部分研究内容
详细信息
    作者简介:

    黄迎松(1974—),男,安徽桐城人,1996年毕业于石油大学(华东)油藏工程专业,2007年获英国赫里欧-瓦特大学石油工程专业硕士学位,研究员,主要从事油气田开发及提高采收率研究工作。E-mail:yanks@126.com

  • 中图分类号: TE312

Solution of Nonlinear Seepage Model for Fracture Well Groupin Low Permeability Reservoirs

  • 摘要:

    精细描述低渗透油藏中流体流速与与压力梯度的非线性关系,是准确计算低渗透油藏压裂井组产量的基础。为此,在描述低渗透油藏非线性渗流特征的基础上,建立了低渗透油藏和压裂裂缝耦合的非线性数学模型,该模型根据渗流特征将渗流过程分为非线性渗流阶段和拟线性渗流阶段进行计算。利用Taylor展开对非线性数学模型进行线性化处理,建立了有限差分方程组,并编制了计算机求解程序。算例分析表明:采用非线性数学模型计算出的地层中压力和饱和度的分布符合地层实际情况;五点法井网压裂井组注水井的裂缝导流能力会随着裂缝闭合而降低,注水效果变差,导致油井产量降低。研究结果表明,低渗透油藏和压裂裂缝耦合的非线性数学模型可以较准确地描述低渗透油藏中流体流速与压力梯度的非线性关系,为准确计算低渗透油藏压裂井组产量奠定基础,为低渗透油藏注水开发提供指导。

    Abstract:

    Having a closely detailed description of the nonlinear relationship between flow velocity and pressure gradient in low permeability reservoir is necessary for accurately developing the frac design, and calculating the production of a group (or unit) of wells that have been hydraulically fractured. Therefore, based on the description of the nonlinear seepage characteristics of low permeability reservoir, a nonlinear mathematical model of coupling low permeability reservoir and hydraulic fractures was established, which divided the seepage process into the nonlinear seepage stage and quasi-linearity stage according to the seepage characteristics. The Taylor expansion was used to linearize the nonlinear mathematical model, and established the finite difference equations, and then formed the computer solving model. The results of example analysis showed that the distributions of formation pressure and saturation calculated by the nonlinear mathematical model were in line with the actual situations of the stratum; the fracture flow conductivity of injection well in the fractured five-spot well pattern decreased with the formation closure, which led to poor water injection effect and low oil well production. Thus, the fracture design should be modified in accordance with the study’s results. The study results indicated that the nonlinear mathematical model and hydraulic fracture coupling could accurately describe the nonlinear relationship between flow velocity and pressure gradient in low-permeability reservoir. This breakthrough establishes a foundation to calculate the production of fractured well group in low-permeability reservoir accurately, and provides a guidance for water flooding development of low permeability reservoir.

  • 图  1   低渗透地层中流体流速与压力梯度的关系

    Figure  1.   Relationship between fluid flow velocity and pressure gradient in low permeability formation

    图  2   求解过程框图

    Figure  2.   Solution process block diagram

    图  3   五点法井网网格系统平面示意

    Figure  3.   Schematic diagram of the five-spot well pattern system

    图  4   压裂注采井组压力和饱和度的计算结果

    Figure  4.   Calculation results of the pressure and saturation of fractured injection-production well group

    图  5   注水井压裂对注采井组产量的影响

    Figure  5.   Effect of fracturing in water injection well on the production of injection-production well group

    图  6   裂缝导流能力对压裂注采井组产量的影响

    Figure  6.   Effect of fracture flow conductivity on the production of fractured injection-production well group

  • [1] 宋付权,刘慈群. 含启动压力梯度油藏的两相渗流分析[J]. 石油大学学报(自然科学版), 1999, 23(3): 47–50. doi: 10.3863/j.issn.1674-5086.1999.03.014

    SONG Fuquan, LIU Ciqun. Analysis of two-phase fluid flow in low permeability reservoir with the threshold pressure gradient[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 1999, 23(3): 47–50. doi: 10.3863/j.issn.1674-5086.1999.03.014

    [2] 程时清, 陈明卓. 油水两相低速非达西渗流数值模拟[J]. 石油勘探与开发, 1998, 25(1): 41–43. doi: 10.3321/j.issn:1000-0747.1998.01.012

    CHENG Shiqing, CHEN Mingzhuo. Numerical simulation of oil-water low-velocity non-Darcy flow[J]. Petroleum Exploration and Development, 1998, 25(1): 41–43. doi: 10.3321/j.issn:1000-0747.1998.01.012

    [3] 周涌沂,彭仕宓,李允,等. 低速非达西渗流的全隐式模拟模型[J]. 石油勘探与开发, 2002, 29(2): 90–93. doi: 10.3321/j.issn:1000-0747.2002.02.024

    ZHOU Yongyi, PENG Shimi, LI Yun, et al. Fully implicit simulation model for low-velocity non-Darcy flow[J]. Petroleum Exploration and Development, 2002, 29(2): 90–93. doi: 10.3321/j.issn:1000-0747.2002.02.024

    [4] 尹芝林,孙文静,姚军. 动态渗透率三维油水两相低渗透油藏数值模拟[J]. 石油学报, 2011, 32(1): 117–121. doi: 10.3969/j.issn.1001-8719.2011.01.020

    YIN Zhilin, SUN Wenjing, YAO Jun. Numerical simulation of the 3D oil-water phase dynamic permeability for low-permeability reservoirs[J]. Acta Petrolei Sinica, 2011, 32(1): 117–121. doi: 10.3969/j.issn.1001-8719.2011.01.020

    [5] 吕广忠,鞠斌山,栾志安. 油藏水力压裂区域分解模拟算法[J]. 石油大学学报(自然科学版), 1998, 22(5): 61–63.

    LYU Guangzhong, JU Binshan, LUAN Zhian. Domain decomposition simulation method for hydraulic fracturing area of reservoir[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 1998, 22(5): 61–63.

    [6] 苏玉亮,王霞,李涛,等. 人工裂缝对低渗透油田开发的影响研究[J]. 钻采工艺, 2006, 29(4): 33–34. doi: 10.3969/j.issn.1000-7393.2006.04.011

    SU Yuliang, WANG Xia, LI Tao, et al. Influence of created fracture on low permeability reservoir development[J]. Drilling & Production Technology, 2006, 29(4): 33–34. doi: 10.3969/j.issn.1000-7393.2006.04.011

    [7] 何勇明,孙尚如,徐荣伍, 等. 低渗透油藏污染井压裂增产率预测模型及敏感性分析[J]. 中国石油大学学报(自然科学版), 2010, 34(3): 76–79. doi: 10.3969/j.issn.1673-5005.2010.03.016

    HE Yongming, SUN Shangru, XU Rongwu, et al. Prediction model for fracturing incremental recovery of damaged well in low-permeability reservoir and sensitivity analysis[J]. Journal of China University of Petroleum(Edition of Natural Science), 2010, 34(3): 76–79. doi: 10.3969/j.issn.1673-5005.2010.03.016

    [8]

    BELHAJ H A, AGHA K R, NOURI A M, et al. Numerical modeling of Forchheimer’s equation to describe darcy and non-Darcy flow in porous media[R]. SPE 80440, 2003.

    [9]

    SOLIMAN M Y. Numerical model estimates fracture production increase[J]. Oil and Gas, 1986, 84(41): 70–74.

    [10] 温庆志,张士诚,王秀宇,等. 支撑裂缝长期导流能力数值计算[J]. 石油钻采工艺, 2005, 27(4): 68–70. doi: 10.3969/j.issn.1000-7393.2005.04.020

    WEN Qingzhi, ZHANG Shicheng, WANG Xiuyu, et al. Numerical calculation of long - term conductivity of propping fractures[J]. Oil Drilling & Production Technology, 2005, 27(4): 68–70. doi: 10.3969/j.issn.1000-7393.2005.04.020

    [11] 任勇,郭建春,赵金洲,等. 压裂井裂缝导流能力研究[J]. 河南石油, 2005, 19(1): 46–48. doi: 10.3969/j.issn.1673-8217.2005.01.017

    REN Yong, GUO Jianchun, ZHAO Jinzhou, et al. A study on flow conductivity of fractures in a fractured well[J]. Henan Petroleum, 2005, 19(1): 46–48. doi: 10.3969/j.issn.1673-8217.2005.01.017

    [12] 胥元刚,张琪. 变裂缝导流能力下水力压裂整体优化设计方法[J]. 大庆石油地质与开发, 2000, 19(2): 40–43. doi: 10.3969/j.issn.1000-3754.2000.02.014

    XU Yuangang, ZHANG Qi. Overall optimizing designation method for hydraulic fracturing under variable fracture diverting capacity[J]. Petroleum Geology & Oilfield Development in Daqing, 2000, 19(2): 40–43. doi: 10.3969/j.issn.1000-3754.2000.02.014

    [13] 孔祥言.高等渗流力学[M].合肥: 中国科学技术大学出版社, 1999: 76–77.

    KONG Xiangyan. Advanced seepage mechanics[M]. Hefei: Press of University of Science and Technology of China, 1999: 76–77.

    [14] 李淑霞, 谷建伟.油藏数值模拟基础[M].东营: 中国石油大学出版社, 2009: 97–101.

    LI Shuxia, GU Jianwei. Fundamentals of numerical reservoir simulation[M]. Dongying: China University of Petroleum Press, 2008: 97–101.

    [15] 戴嘉尊, 邱建贤.微分方程数值解法[M].南京: 东南大学出版社, 2002.

    DAI Jiazun, QIU Jianxian. Numerical solutions for differential equations[M]. Nanjing: Southeast University Press, 2002.

    [16] 张建国, 雷光伦.油气层渗流力学[M].东营: 石油大学出版社, 1998: 46–47.

    ZHANG Jianguo, LEI Guanglun. Seepage mechanics of oil and gas reservoir[M]. Dongying: Petroleum University Press, 1998: 46–47.

  • 期刊类型引用(27)

    1. 袁亮亮,陈亚舟,孙大伟,张红岗,魏波. 超低渗油藏整体宽带压裂技术研究与应用. 石化技术. 2024(01): 41-43 . 百度学术
    2. 王哲,曹广胜,白玉杰,王培伦,王鑫. 低渗透油藏提高采收率技术现状及展望. 特种油气藏. 2023(01): 1-13 . 百度学术
    3. 慕立俊,李向平,喻文锋,卜军,李蕾,刘铁楼. 超低渗透油藏水平井重复压裂新老缝合理配比研究. 石油钻探技术. 2023(03): 97-104 . 本站查看
    4. 雷群,翁定为,管保山,师俊峰,才博,何春明,孙强,黄瑞. 中美页岩油气开采工程技术对比及发展建议. 石油勘探与开发. 2023(04): 824-831 . 百度学术
    5. LEI Qun,WENG Dingwei,GUAN Baoshan,SHI Junfeng,CAI Bo,HE Chunming,SUN Qiang,HUANG Rui. Shale oil and gas exploitation in China: Technical comparison with US and development suggestions. Petroleum Exploration and Development. 2023(04): 944-954 . 必应学术
    6. 周怡,于世虎,郭德斌. 暂堵技术在致密气储层应用探析. 能源与节能. 2023(11): 14-18+23 . 百度学术
    7. 尹虎,董满仓,卢伟峰,褚晓红. 非交联黄原胶清洁压裂技术研究及应用——以延长油田FJ29-5井为例. 中国石油和化工标准与质量. 2021(11): 143-144+149 . 百度学术
    8. 李熠,张宁利,刘建升,周长顺,于波,马腾. 中高含水油井宽带压裂技术试验及应用. 石油化工应用. 2021(08): 58-61 . 百度学术
    9. 陈清,曹伟佳,田中原,卢祥国,闫冬. 自悬浮支撑剂覆膜材料对储层渗透率影响研究. 石油化工高等学校学报. 2020(01): 42-47 . 百度学术
    10. 杨金峰,张进科,张倩,苟利鹏,张满. 暂堵压裂造多缝工艺技术在姬塬油田的研究与应用. 石油化工应用. 2020(07): 46-51 . 百度学术
    11. 王红娟,洪千里,李伟峰,杨全枝,高明星. 低渗透浅层油藏裸眼井复产挖潜技术应用. 非常规油气. 2020(04): 112-118 . 百度学术
    12. 董小卫,田志华,舒博钊,南荣丽,韩光耀,刘亚明,赵文龙. 水平井不动管柱无限级分段重复压裂技术研究. 石油矿场机械. 2019(01): 60-63 . 百度学术
    13. 徐昆,李达,郭玉杰,范希良,赵立强. DMF新型超分子暂堵剂研发及性能评价. 油气藏评价与开发. 2019(01): 51-55 . 百度学术
    14. 李国雄,史飞,刘鼎,陈向东,程某存,徐少华,赵艳林. 子长油田肖家河区长4+5、长6储层压裂特征研究. 山东化工. 2019(03): 80-82 . 百度学术
    15. 齐月魁,李东平,张宏峰,黄满良,赵涛,齐振. 基于膨胀管封堵的老井页岩油体积压裂技术研究. 天津科技. 2019(11): 49-55 . 百度学术
    16. 隋阳,刘德基,刘建伟,蒋明,刘建辉,张宁县. 低成本致密油层水平井重复压裂新方法——以吐哈油田马56区块为例. 石油钻采工艺. 2018(03): 369-374 . 百度学术
    17. 王坤,葛腾泽,曾雯婷. 低产油气井强制裂缝转向重复压裂技术. 石油钻探技术. 2018(02): 81-86 . 本站查看
    18. 秦金立. 选择性重复压裂工具关键技术. 石油钻探技术. 2018(04): 71-77 . 本站查看
    19. 陶亮,郭建春,李凌铎,李慧,贺娜. 致密油藏水平井重复压裂多级选井方法研究. 特种油气藏. 2018(04): 67-71 . 百度学术
    20. 李达,王乐,衣德强,朱李安,胡晓宇,崔云群,党小理,崔露. 苏里格致密砂岩压裂中转向剂用量与转向角的关系. 钻井液与完井液. 2018(04): 108-113 . 百度学术
    21. 段景杰,姚振杰,黄春霞,赵永攀. 特低渗透油藏CO_2驱流度控制技术. 断块油气田. 2017(02): 190-193 . 百度学术
    22. 朱金智,雷明,任玲玲,王晓强,徐国何,黄维安. 致密砂岩气藏高温高压敏感性评价及机理探讨——以塔里木盆地B区块致密气藏为例. 断块油气田. 2017(02): 222-225 . 百度学术
    23. 温永利,陈丕国,唐颖超. 低渗透油田压裂技术及发展趋势探讨. 中国石油石化. 2017(04): 85-86 . 百度学术
    24. 刘佳. 采油井重复压裂裂缝失效原因研究. 化工管理. 2016(19): 171 . 百度学术
    25. 王疆宁. 压裂技术在油田低渗透储层改造中的应用. 石化技术. 2016(11): 95 . 百度学术
    26. 王国壮,梁承春,孙招锋,徐超. 红河油田长6特低渗油藏多元复合酸降压增注技术. 石油钻探技术. 2016(04): 96-101 . 本站查看
    27. 马金良,潘娟芳,王林,张武,李楠,祝道平. 自封压缩式封隔器的研制与应用. 石油钻探技术. 2015(06): 120-124 . 本站查看

    其他类型引用(19)

图(6)
计量
  • 文章访问数:  1214
  • HTML全文浏览量:  557
  • PDF下载量:  52
  • 被引次数: 46
出版历程
  • 收稿日期:  2018-06-05
  • 修回日期:  2019-06-25
  • 网络出版日期:  2019-09-11
  • 刊出日期:  2019-10-31

目录

    /

    返回文章
    返回