低渗透储层多级转向压裂技术

周丹, 熊旭东, 何军榜, 董波, 贺勇

周丹, 熊旭东, 何军榜, 董波, 贺勇. 低渗透储层多级转向压裂技术[J]. 石油钻探技术, 2020, 48(1): 85-89. DOI: 10.11911/syztjs.2019077
引用本文: 周丹, 熊旭东, 何军榜, 董波, 贺勇. 低渗透储层多级转向压裂技术[J]. 石油钻探技术, 2020, 48(1): 85-89. DOI: 10.11911/syztjs.2019077
ZHOU Dan, XIONG Xudong, HE Junbang, DONG Bo, HE Yong. Multi-Stage Deflective Fracturing Technology for Low Permeability Reservoir[J]. Petroleum Drilling Techniques, 2020, 48(1): 85-89. DOI: 10.11911/syztjs.2019077
Citation: ZHOU Dan, XIONG Xudong, HE Junbang, DONG Bo, HE Yong. Multi-Stage Deflective Fracturing Technology for Low Permeability Reservoir[J]. Petroleum Drilling Techniques, 2020, 48(1): 85-89. DOI: 10.11911/syztjs.2019077

低渗透储层多级转向压裂技术

基金项目: 中国石油天然气股份有限公司油气开发重大科技项目“新疆油田和吐哈油田勘探开发关键技术研究与应用”课题14“降本提效试油及采油关键技术研究与应用”(编号:2017E-0414)资助
详细信息
    作者简介:

    周丹(1987—),男,河南淮阳人,2009年毕业于中国石油大学(华东)石油工程专业,2012年获中国石油大学(华东)石油与天然气工程专业硕士学位,工程师,主要从事提高采收率技术研究。E-mail:bkqzdan@petrochina.com.cn

  • 中图分类号: TE357.1

Multi-Stage Deflective Fracturing Technology for Low Permeability Reservoir

  • 摘要:

    低渗透储层采用常规压裂工艺改造后,存在压裂改造波及体积小、有效期短和改造效果差等问题。为了提高低渗透油气田增储上产水平,根据油藏地质特点和多级转向压裂起裂机理,研制了溶解度高、溶解速度快、残渣含量少和对储层渗透率伤害小的高性能水溶性暂堵剂,并形成了多级转向压裂技术。在地层压开裂缝后,实时向地层中加入该高性能水溶性暂堵剂形成瞬时暂堵,提高缝内净压力,通过暂堵转向产生微裂缝和分支缝,从而形成复杂的网络裂缝,实现体积改造的目的。多级转向压裂技术在新疆油田X区块应用后,产油量大幅提高,单井日增油量为常规压裂井的2.0倍;稳产时间长,有效期较常规压裂井延长50%。多级转向压裂技术解决了低渗透砾岩储层改造难题,为低渗透砾岩储层开发后期稳产提供了新的技术手段。

    Abstract:

    Problems such as small sweeping volume, short longevity and poor fracturing stimulation effects are common when conventional fracturing technology is adopted in low permeability reservoirs. In order to improve the production of low-permeability oil and gas fields, a high-performance temporary bridging agent with high solubility, fast dissolution rate, low residue content and low damage to permeability was developed with deployment using an innovative multi-stage deflective fracturing technology. These were developed based on geological characteristics of the reservoir and the initiation mechanism of multi-stage deflective fracturing. When the formation is fractured, a temporary bridging agent is added in the frac fluid in real time to form instantaneous temporary bridging at the opening of fractures. These result increased net pressure within fractures, and generate microfractures and branch fractures, thus forming complex network fractures and achieving the goal of volumetric stimulation. After the application of multi-stage deflective fracturing technology in Block X of the Xinjiang Oilfield, oil production dramatically increased, and daily oil increment per well is 2.0 times that of wells with conventional fracturing technique. In addition, this method results in a longer stable production period, and the longevity is 50% higher than that with conventional fracturing. The application of multi-stage deflective fracturing technology can solve the problem of reservoir stimulation in low permeability conglomerate reservoirs and provided a new technical mean for achieving stable production in the late production period of low permeability conglomerate reservoirs.

  • 图  1   多级转向压裂技术

    Figure  1.   Multi-stage deflective fracturing technology

    图  2   压裂裂纹开裂模式

    Figure  2.   Initiation mode of induced fracture

    图  3   J井压裂施工曲线

    Figure  3.   Fracturing operation curve of Well J

  • [1] 李阳, 姚飞, 翁定为, 等.重复压裂技术的发展及展望[J].石油天然气学报, 2005, 27(增刊5): 789–791.

    LI Yang, YAO Fei, WENG Dingwei, et al. Development and prospect of repeated fracturing technology[J]. Journal of Oil and Gas Technology, 2005, 27(supplement 5):789–791.

    [2]

    ELBEL J L, MACK M G. Refracturing: observations and theories[R]. SPE 25464, 1993.

    [3] 郭大立,赵金洲,吴刚,等. 堵压综合采油技术研究与应用[J]. 石油钻采工艺, 1999, 21(6): 73–76.

    GUO Dali, ZHAO Jinzhou, WU Gang, et al. Research and application of complex plugging and fracturing production technique[J]. Oil Drilling & Production Technology, 1999, 21(6): 73–76.

    [4] 黄源琳,郭建春,苗晋伟,等. 转向压裂工艺研究及应用[J]. 油气井测试, 2008, 17(4): 53–54, 57. doi: 10.3969/j.issn.1004-4388.2008.04.021

    HUANG Yuanlin, GUO Jianchun, MIAO Jianwei, et al. Study and application of turnaround fracture technology[J]. Well Testing, 2008, 17(4): 53–54, 57. doi: 10.3969/j.issn.1004-4388.2008.04.021

    [5] 刘进军,古丽曼,解利军,等. 转向压裂技术在准东油田的应用[J]. 新疆石油天然气, 2007, 3(3): 56–58. doi: 10.3969/j.issn.1673-2677.2007.03.014

    LIU Jinjun, GU Liman, XIE Lijun, et al. Application of turnaround fracture technology in Zhundong Oilfield[J]. Xinjiang Oil and Gas, 2007, 3(3): 56–58. doi: 10.3969/j.issn.1673-2677.2007.03.014

    [6] 时玉燕,刘晓燕,赵伟,等. 裂缝暂堵转向重复压裂技术[J]. 海洋石油, 2009, 29(2): 60–64. doi: 10.3969/j.issn.1008-2336.2009.02.012

    SHI Yuyan, LIU Xiaoyan, ZHAO Wei, et al. Turnaround refracturing technology applied to change crack direction[J]. Offshore Oil, 2009, 29(2): 60–64. doi: 10.3969/j.issn.1008-2336.2009.02.012

    [7] 张全胜,李明,张子麟,等. 胜利油田致密油储层体积压裂技术及应用[J]. 中国石油勘探, 2019, 24(2): 233–240.

    ZHANG Quansheng, LI Ming, ZHANG Zilin, et al. Application of volume fracturing technology in tight oil reservoirs of Shengli Oilfield[J]. China Petroleum Exploration, 2019, 24(2): 233–240.

    [8] 苏良银,白晓虎,陆红军,等. 长庆超低渗透油藏低产水平井重复改造技术研究及应用[J]. 石油钻采工艺, 2017, 39(4): 521–527.

    SU Liangyin, BAI Xiaohu, LU Hongjun, et al. Study on repeated stimulation technology and its application to in low-yield horizontal wells in ultra low permeability oil reservoirs, Changqing Oilfield[J]. Oil Drilling & Production Technology, 2017, 39(4): 521–527.

    [9] 陶亮,郭建春,李凌铎,等. 致密油藏水平井重复压裂多级选井方法研究[J]. 特种油气藏, 2018, 25(4): 67–71.

    TAO Liang, GUO Jianchun, LI Lingduo, et al. Multi-stage well selection for refracturing operations in horizontal wells for tight oil reservoir development[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 67–71.

    [10] 王坤,葛腾泽,曾雯婷. 低产油气井强制裂缝转向重复压裂技术[J]. 石油钻探技术, 2018, 46(2): 81–86.

    WANG Kun, GE Tengze, ZENG Wenting. Re-fracturing technique using forced fracture re-orientation of low production oil and gas wells[J]. Petroleum Drilling Techniques, 2018, 46(2): 81–86.

    [11] 李玮,纪照生. 暂堵转向压裂机理有限元分析[J]. 断块油气田, 2016, 23(4): 514–517.

    LI Wei, JI Zhaosheng. Finite element analysis of temporary plugging and fracturing mechanism[J]. Fault-Block Oil & Gas Field, 2016, 23(4): 514–517.

    [12] 霍斐斐,王海军,翁旭,等. 转向重复压裂技术在陕北低渗透油田的应用[J]. 石油地质与工程, 2011, 25(4): 95–97. doi: 10.3969/j.issn.1673-8217.2011.04.029

    HUO Feifei, WANG Haijun, WENG Xu, et al. Application of turning repeated fracturing technology in low permeability oilfields in Northern Shaanxi[J]. Petroleum Geology and Engineering, 2011, 25(4): 95–97. doi: 10.3969/j.issn.1673-8217.2011.04.029

    [13] 唐述凯,李明忠,綦民辉,等. 重复压裂前诱导应力影响新裂缝转向规律[J]. 断块油气田, 2017, 24(4): 557–560.

    TANG Shukai, LI Mingzhong, QI Minhui, et al. Study of fracture reorientation caused by induced stress before re-fracturing[J]. Fault-Block Oil & Gas Field, 2017, 24(4): 557–560.

    [14] 胡益涛. 地应力场对井眼破裂压力的影响规律研究[J]. 石油化工应用, 2018, 37(11): 41–43, 47. doi: 10.3969/j.issn.1673-5285.2018.11.011

    HU Yitao. Study on the influence of in-situ stress field on wellbore fracture pressure[J]. Petrochemical Applications, 2018, 37(11): 41–43, 47. doi: 10.3969/j.issn.1673-5285.2018.11.011

    [15] 薛亚斐,温哲豪,沈云波,等. 绒囊暂堵转向压裂裂缝转向能力及其力学机理分析[J]. 石油钻采工艺, 2018, 40(5): 633–640.

    XUE Yafei, WEN Zhehao, SHEN Yunbo, et al. Analysis on the fracture diverting capacity and mechanical mechanisms of fuzzy-ball temporary plugging, diverting and fracturing technology[J]. Oil Drilling & Production Technology, 2018, 40(5): 633–640.

    [16] 郭建春,尹建,赵志红. 裂缝干扰下页岩储层压裂形成复杂裂缝可行性[J]. 岩石力学与工程学报, 2014, 33(8): 1589–1596.

    GUO Jianchun, YIN Jian, ZHAO Zhihong. Feasibility of formation of complex fractures under cracks interference in shale reservoir fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1589–1596.

    [17] 马海洋,罗明良,温庆志,等. 转向压裂用可降解纤维优选及现场应用[J]. 特种油气藏, 2018, 25(6): 145–149.

    MA Haiyang, LUO Mingliang, WEN Qingzhi, et al. Degradable fiber optimization and field application in diverting fracturing[J]. Special Oil & Gas Reservoirs, 2018, 25(6): 145–149.

    [18] 王彦玲,原琳,任金恒. 转向压裂暂堵剂的研究及应用进展[J]. 科学技术与工程, 2017, 17(32): 196–204.

    WANG Yaning, YUAN Lin, REN Jinheng. The progress in research and application of temporary plugging agent for diverting fracturing[J]. Science Technology and Engineering, 2017, 17(32): 196–204.

    [19] 严衡文. 油藏含油系数的确定及其在油藏评价中的意义[J]. 石油学报, 1983, 4(1): 37–43.

    YAN Hengwen. Determination of oil-bearing coefficient N and its significance in reservoir evaluation[J]. Acta Peitrolei Sinaca, 1983, 4(1): 37–43.

    [20] 丁云宏,胥云,翁定为,等. 低渗透油气田压裂优化设计新方法[J]. 天然气工业, 2009, 29(9): 78–80.

    DING Yunhong, XU Yun, WENG Dingwei, et al. A new method of fracturing optimization design for low-permeability oil and gas fields[J]. Natural Gas Industry, 2009, 29(9): 78–80.

    [21] 陈作,何青,王宝峰,等. 大牛地气田长水平段水平井分段压裂优化设计技术[J]. 石油钻探技术, 2013, 41(6): 82–85.

    CHEN Zuo, HE Qing, WU Chunfang, et al. Design optimization of staged fracturing for long lateral horizontal wells in Daniudi Gas Field[J]. Petroleum Drilling Techniques, 2013, 41(6): 82–85.

    [22] 齐银,白晓虎,宋辉,等. 超低渗透油藏水平井压裂优化及应用[J]. 断块油气田, 2014, 21(4): 483–485.

    QI Yin,BAI Xiaohu,SONG Hui,et al. Fracturing optimization and application of horizontal wells in ultra-low permeability reservoir[J]. Fault-Block Oil & Gas Field, 2014, 21(4): 483–485.

  • 期刊类型引用(18)

    1. 焦卫国,王健,杨凤春,李志刚. 钻井提速技术在GT1井的综合应用. 石油工程建设. 2024(S1): 39-42 . 百度学术
    2. 赵洪波,朱芝同,梁涛,赵志涛,朱迪斯,单文军,刘文武,何远信. 页岩气基础地质调查钻井技术研究进展及展望. 中国地质. 2023(02): 376-394 . 百度学术
    3. 徐建飞,邹德永,高栋梁,王震. 切削-犁削-磨削混合金刚石钻头的研制及应用. 科技通报. 2022(10): 16-19 . 百度学术
    4. 袁国栋,王鸿远,陈宗琦,母亚军,席宝滨. 塔里木盆地满深1井超深井钻井关键技术. 石油钻探技术. 2020(04): 21-27 . 本站查看
    5. 王滨,邹德永,李军,杨宏伟,黄涛. 深部及复杂地层中PDC钻头综合改进方法. 石油钻采工艺. 2018(01): 44-51 . 百度学术
    6. 刘笑傲,邹德永,陈修平. 强研磨性硬地层金钢石复合汽钻头孕镶块混合钻头优化设计试验. 科学技术与工程. 2017(29): 220-226 . 百度学术
    7. 郭宝林,孙庆春. 鸭西背斜钻井提速技术试验及效果分析. 探矿工程(岩土钻掘工程). 2017(02): 53-56 . 百度学术
    8. 陈彦霖,邹德永,马宇奔,王滨. PDC-孕镶块混合齿钻头同轨布齿出露高差试验优选. 钻采工艺. 2017(02): 14-16+76+5-6 . 百度学术
    9. 董佳辉,殷忠玲. 基于微钻试验台检测系统的研究与设计. 自动化与仪器仪表. 2017(11): 75-77 . 百度学术
    10. 袁军,邹德永,刘笑傲. 切向导入式旋流喷嘴辅助PDC钻头破岩实验. 断块油气田. 2016(04): 528-532 . 百度学术
    11. 袁军,邹德永,钟洪娇,刘笑傲. 适合于研磨性硬地层的新型孕镶金刚石钻头优化设计试验研究. 科学技术与工程. 2016(04): 16-21 . 百度学术
    12. 吴仲华,温林荣,丁世清,何育光,赵哲龙,付晓颖. 孕镶金刚石钻头配合螺杆钻具在乌参1井应用. 石油矿场机械. 2016(05): 83-87 . 百度学术
    13. 谭凯文,肖华平,刘书海. 4种钻采装备的减磨抗磨损技术研究进展. 石油矿场机械. 2016(05): 102-110 . 百度学术
    14. 杨顺辉. 新型多重复合切削钻头的研制. 石油机械. 2016(10): 21-24 . 百度学术
    15. 郭宝林,孙庆春,于建克,安川. 鸭K区块钻井提速与钻头使用分析. 天然气与石油. 2016(06): 60-65+145 . 百度学术
    16. 邹德永,郭玉龙,赵建,陈修平,王家骏,于金平. 锥形PDC单齿破岩试验研究. 石油钻探技术. 2015(01): 122-125 . 本站查看
    17. 关舒伟. 新型孕镶金刚石钻头研制及试验. 石油钻探技术. 2015(04): 129-132 . 本站查看
    18. 陈修平,邹德永,李东杰,娄尔标. PDC钻头防泥包性能数值模拟研究. 石油钻探技术. 2015(06): 108-113 . 本站查看

    其他类型引用(1)

图(3)
计量
  • 文章访问数:  1261
  • HTML全文浏览量:  482
  • PDF下载量:  105
  • 被引次数: 19
出版历程
  • 收稿日期:  2019-01-24
  • 修回日期:  2019-12-17
  • 网络出版日期:  2019-12-24
  • 刊出日期:  2019-12-31

目录

    /

    返回文章
    返回