四川盆地威远页岩气藏高效开发关键技术

伍贤柱

伍贤柱. 四川盆地威远页岩气藏高效开发关键技术[J]. 石油钻探技术, 2019, 47(4): 1-9. DOI: 10.11911/syztjs.2019074
引用本文: 伍贤柱. 四川盆地威远页岩气藏高效开发关键技术[J]. 石油钻探技术, 2019, 47(4): 1-9. DOI: 10.11911/syztjs.2019074
WU Xianzhu. Key Technologies in the Efficient Development of the Weiyuan Shale Gas Reservoir, Sichuan Basin[J]. Petroleum Drilling Techniques, 2019, 47(4): 1-9. DOI: 10.11911/syztjs.2019074
Citation: WU Xianzhu. Key Technologies in the Efficient Development of the Weiyuan Shale Gas Reservoir, Sichuan Basin[J]. Petroleum Drilling Techniques, 2019, 47(4): 1-9. DOI: 10.11911/syztjs.2019074

四川盆地威远页岩气藏高效开发关键技术

基金项目: 中国石油集团天然气有限公司川渝威远页岩气风险合作开发项目资助
详细信息
    作者简介:

    伍贤柱(1963—),男,四川开江人,1983年毕业于西南石油学院钻井工程专业,教授级高级工程师,主要从事钻井技术、井控技术管理。系本刊编委。E-mail:wuxianzhu1@163.com

  • 中图分类号: TE37

Key Technologies in the Efficient Development of the Weiyuan Shale Gas Reservoir, Sichuan Basin

  • 摘要:

    威远页岩气藏地质条件复杂,工程技术面临很大挑战,因此,通过地质和工程技术的相互融合,以“选好区、打准层、压好井、采好气”为核心,从地质评价及井位部署优化、水平井优快钻井及精准地质导向、水平井体积压裂、排采及动态分析等4个关键环节入手进行技术攻关,形成了适合威远页岩气藏勘探开发的6项关键技术,即页岩气高产区带评价与优选技术、复杂地表条件下一体化井位部署与优化、长水平段丛式水平井高效钻井完井技术、页岩甜点录井辅助地质导向技术、页岩气体积压裂技术、排采测试及气藏开发动态分析技术。6项关键技术在威远页岩气藏开发中得到推广应用并不断完善,开发效果不断提高,主力产层龙一11小层的钻遇率达到98%,钻井周期缩短至69.2 d,测试产量达到19.7×104 m3/d,单井最终可采储量增至10 482×104 m3。6项关键开发技术为威远页岩气藏的高效开发提供了技术支持,且技术的适应性不断增强。

    Abstract:

    The Weiyuan shale gas reservoir presents complex geological conditions and poses numerous engineering challenges. To address those problems, technical research was conducted through the integration of geological and engineering technologies. The study included four major aspects: geological evaluation and well locations optimization, horizontal well rapid drilling and precise geosteering, horizontal well volume fracturing, drainage production and dynamic analysis, which follows the rules of "selecting the zone, hitting the target layer, killing the well and producing gas properly". Six key technologies suitable for the exploration & development of Weiyuan shale gas reservoirs have been established: 1) shale gas high-yield zone evaluation and selection, 2) integrated well location deployment and optimization under complex surface conditions, 3) efficient drilling/completion of long horizontal section cluster horizontal wells, 4) shale "sweet point" mud logging assisted geosteering, 5) shale gas volume fracturing, 6) drainage testing and gas reservoir development dynamic analysis. Those key technologies have been applied and optimized in the development of Weiyuan shale gas reservoir, and the development effect is under continuous improvement. The main production zone in the Long 1 11 member has a reservoir encountering rate of 98%, the drilling cycle is shortened to 69.2 days, the test output reaches 19.7×104 m3/d, and the final recoverable reserves per well is up to 10 482×104 m3. These six key development technologies provide technical support for in the efficient development of Weiyuan shale gas reservoir, and their technical adaptability is constantly being enhanced.

  • 南海莺琼盆地的主要目的层为黄流组二段,构造面积大、砂体厚度大,地层温度高达200 ℃,地层压力系数大于2.3,水深90.00 m。目前,该盆地高温高压井完钻井深4 200.00~4 500.00 m,一般采用五开井身结构:一开,采用ϕ914.4 mm钻头钻进,下入ϕ762.0 mm套管;二开,采用ϕ660.4 mm钻头钻进,下入ϕ508.0 mm套管;三开,采用ϕ444.5 mm钻头钻进,下入ϕ339.7 mm套管;四开,采用ϕ311.1 mm钻头钻进,下入ϕ244.5 mm套管;五开,采用ϕ212.7 mm钻头钻进,裸眼完井。钻进黄流组二段地层时井漏频发,漏失量大,堵漏难度大,堵漏成功率低,严重影响了莺琼盆地的勘探开发进程[1-2]。国内外针对高温高压井的漏失机理尚未认识清楚,没有有效的堵漏手段,堵漏效果差。多年钻井实践及研究表明,莺琼盆地地层的安全密度窗口极窄,钻进过程中产生的激动压力极易超过地层漏失压力,且在高压下易产生诱导裂缝[3-7]。常用堵漏材料抗高温能力差,在高温条件下易碳化,且很难准确掌握高压诱导裂缝的尺寸,造成堵漏材料对诱导裂缝的适应性差,导致堵漏成功率低,复漏频发。为此,笔者在分析莺琼盆地地层漏失原因的基础上,优选抗高温堵漏材料,针对诱导性裂缝的特点,将抗高温刚性堵漏材料与弹性堵漏材料复配,形成了适用于高温高压井的堵漏浆。该堵漏浆在莺琼盆地10口高温高压井进行了应用,堵漏成功率得到显著提高,堵漏效果较好。

    莺琼盆地从上至下依次钻遇乐东组、莺歌海组和黄流组地层,其中乐东组及莺歌海组地层岩性以灰色厚层状泥岩、粉砂质泥岩为主,厚度超过2 000.00 m,为天然良好盖层。目的层黄流组地层岩性为浅灰色中砂岩、细砂岩、粉砂岩和灰色泥岩,且砂岩与泥岩呈不等厚互层。莺琼盆地底部发育大型泥–流体底辟构造,且成群成带分布,在快速沉积、大型泥–流体底辟作用及热流体活动共同作用下,底辟带形成了高温高压环境,造成地层压力抬升快、台阶多,莺歌海组地层压力系数自垂深2 000.00 m由1.0迅速升至2.0,黄流组局部地层压力系数超过2.3,同时地层温度高达200 ℃[8];同时,黄流组砂层薄弱,承压能力低,导致目的层安全密度窗口极窄。莺琼盆地部分高温高压井目的层井段的安全密度窗口统计结果见表1

    表  1  莺琼盆地高温高压井目的层井段安全密度窗口统计结果
    Table  1.  Statistical result of safety density windows of HTHP wells in the Yingqiong Basin
    井名井眼直径/mm地层温度/℃漏失压力当量密度/(kg·L–1地层压力系数安全密度窗口/(kg·L–1
    LD161-A212.71852.302.270.03
    LD101-B212.71882.282.270.01
    LD102-A212.71882.372.260.11
    LD101-C212.71942.392.260.13
    LD103-A212.71882.402.280.12
    下载: 导出CSV 
    | 显示表格

    表1可以看出,目的层井段安全密度窗口在0.10 kg/L左右,部分井几乎无安全密度窗口。钻井过程中,起下钻速度、排量、转速等变化产生的激动压力极易超过上层套管鞋及薄弱层的漏失压力,造成井漏。

    莺琼盆地目的层渗透率为0.1~5.0 mD,泥质含量较高,部分井段地层泥质含量高达59%。井壁成像测井结果显示,目的层井壁发育诱导裂缝,诱导裂缝宽且长。这是由于井下存在着各种应力,高温高压井眼内钻井液液柱压力大,将在井壁最大主应力方向上产生足以使井壁发生张性破裂的张应力,从而产生诱导裂缝,钻井液在压差作用下通过诱导裂缝进入地层,加上目的层井段地层泥质含量高,导致诱导裂缝进一步扩大、延伸,进而引发井漏[9-11]

    由于莺琼盆地高温高压井目的层井段安全密度窗口窄,同时井底温度高,要求所使用的堵漏材料与其他钻井液添加剂配伍性好,不能影响高密度钻井液的性能,以避免因钻井液性能变化引起激动压力过大,导致井漏进一步恶化;同时,要求堵漏材料抗温能力强,避免在高温环境下失效。

    为有效封堵诱导裂缝,采用刚性堵漏材料及弹性堵漏材料相结合的方式:首先选用高强度刚性材料在诱导裂缝端部架桥,再选用具有高压缩性、能够自适应不同尺寸及不同形状裂缝形态的弹性堵漏材料,在压力作用下充填在诱导裂缝根部及端部空隙中,形成致密封堵层,以阻止诱导裂缝进一步延伸扩大,提高地层承压能力。

    目前大部分堵漏材料在温度超过180 ℃时容易碳化,造成其强度降低。经过大量试验筛选出了刚性堵漏材料高硬度果壳粉DXD和抗高温弹性堵漏材料弹性石墨TXD。果壳粉DXD和石墨TXD在200 ℃下老化前后的粒度分布如图1所示。从图1可以看出,经过200 ℃老化后,DXD和TXD的粒度分布与老化前相差不大。高温老化前,DXD和TXD的抗压强度分别为10和34 MPa;高温老化后,DXD和TXD的抗压强度分别为8和33 MPa。这说明DXD和TXD没有出现高温碳化现象,其抗温能力超过200 ℃。

    图  1  堵漏材料高温老化前后的粒度分布
    Figure  1.  Particle size distribution of plugging materials before and after high temperature aging

    井壁成像测井解释结果表明,莺琼盆地目的层诱导裂缝的宽度集中在120~200 μm,根据三分之一架桥理论,堵漏材料的粒径在40~66 μm时架桥堵漏效果最好,5.0%DXD和3.0%TXD复配后的平均粒径为50~60 μm,可取得较好的架桥堵漏效果。将5.0%DXD和3.0%TXD加入莺琼盆地某井使用的密度为2.30 kg/L的井浆(配方为0.8%膨润土+0.6%烧碱+3.0%有机树脂Resinex+0.3%高温降滤失剂Calovis+3.5%褐煤树脂XP–20K 2.0%磺化沥青Soltex+3.0%碳酸钙QWY)中,评价其在200 ℃下老化16 h后的流变性及滤失性能,结果见表2。从表2可以看出,加入堵漏材料后井浆的API滤失量和高温高压滤失量均有所降低,漏斗黏度和塑性黏度有所增大,但仍满足现场泵入要求。因此,堵漏浆的配方可确定为:0.8%膨润土+0.6%烧碱+3.0%有机树脂Resinex+0.3%高温降滤失剂Calovis+3.5%褐煤树脂XP–20K+2.0%磺化沥青Soltex+3.0%碳酸钙QWY+5.0%刚性堵漏材料DXD+3.0%弹性堵漏材料TXD。

    表  2  堵漏浆基本性能评价结果
    Table  2.  Results of basic performance evaluation of plugging slurry
    试验浆试验条件漏斗黏度/s塑性黏度/(mPa·s)动切力/PaAPI滤失量/mL高温高压滤失量/mL
    井浆402294.26.8
    井浆+5.0%DXD + 3.0%TXD老化后442793.25.4
    下载: 导出CSV 
    | 显示表格

    选取了2个渗透率相当的陶瓷砂盘(砂盘渗透率分别为4.6和5.3 mD,孔喉直径为80~200 μm,接近地层诱导裂缝大小),进行井浆和堵漏浆的砂盘漏失试验,试验温度设置为200 ℃,试验压差设置为6.89 MPa,结果见表3。由表3可知,堵漏浆的瞬时滤失量为18 mL,低于井浆瞬时滤失量(32 mL),2 h后堵漏浆的滤失量仅为25 mL,而井浆的滤失量为60 mL,说明堵漏浆的降滤失性能较强。

    表  3  堵漏浆及井浆砂盘漏失试验结果
    Table  3.  Results of plugging slurry and original mud sand disc leakage test
    试验浆瞬时漏失量/mL不同时间累计漏失量/mL
    0.5 h1.0 h1.5 h2.0 h
    堵漏浆1824252525
    井浆3241495460
    下载: 导出CSV 
    | 显示表格

    用扫描电镜观测堵漏浆砂盘漏失试验所用的砂盘,结果如图2所示。由图2可知,漏失试验后砂盘的孔隙被堵漏材料封堵,形成了致密的封堵层。主要是刚性堵漏材料首先充填在砂盘孔隙中,可压缩的弹性石墨材料在高压作用下,进一步充填于剩余孔隙中,形成了致密的封堵层。

    图  2  砂盘漏失试验前后砂盘扫描电镜观测结果
    Figure  2.  Scanning electron microscope results before and after sand disc leakage plugging

    应用传统裂缝堵漏仪评价堵漏浆封堵性能时,采用了平行缝方式,无法真实模拟地层裂缝形态,因此,利用CDL-Ⅱ型高温高压动态堵漏仪,用1.0 mm梯形缝(进口缝宽3.0 mm、出口缝宽1.0 mm)模拟井壁裂缝来评价堵漏浆的封堵性能,试验温度为200 ℃。密度2.30 kg/L井浆及堵漏浆对梯形缝的堵漏效果如图3所示。由图3可知,井浆承压能力约为5 MPa,堵漏浆的承压能力稳定在18 MPa,与井浆相比,堵漏浆的承压堵漏能力更强。分析认为,刚性堵漏材料DXD在裂缝中先进行架桥,然后具有较高压缩率的弹性堵漏材料TXD在压差作用下继续充填于裂缝剩余孔隙中,形成致密封堵层,从而提高了承压能力[11-14]

    图  3  井浆及堵漏浆承压堵漏性能评价结果
    Figure  3.  Evaluation on the under-pressure plugging performances of original mud and plugging slurry

    莺琼盆地高温高压井堵漏技术在10口井进行了现场应用,堵漏浆密度最高达2.40 kg/L,井底温度最高达212 ℃。总体应用效果良好,在堵漏的同时提高了地层承压能力,复漏发生次数大大减少,堵漏成功率由采用常规堵漏技术的不到30%提高到了80%以上。下面以LD101–E井为例介绍具体应用情况。

    LD101–E井钻至井深4 105.00 m(已进入目的层)时,录井监测系统显示,泵压由10.34 MPa突然降至8.28 MPa,返出钻井液量由24%降至1%,判断发生了井漏。静止观察3 h,计量罐液量突然增加1 m3,判断发生了溢流,现场关井进行节流排气,开井后钻井液出口密度降至2.22 kg/L。该井段上层套管鞋处漏失当量密度为2.40 kg/L,发生井漏时钻井液密度为2.24 kg/L,随钻显示井底当量循环密度为2.33 kg/L,可见井深4 105.00 m处的安全密度窗口小于0.10 kg/L。循环排气结束后,通过控制排量维持井底当量循环密度在2.28~2.29 kg/L进行钻进,期间逐步将钻井液密度提高至2.23 kg/L。钻至井深4 138.00 m时,返出钻井液量增多,活动池液量增加3.5 m3,再次发生溢流,关井循环排气,控制排量维持井底当量循环密度在2.32~2.33 kg/L,将钻井液密度调整至2.29 kg/L,静止观察井筒稳定性。

    由于安全密度窗口窄,决定起钻,下光钻杆静止挤入堵漏浆,提高地层承压能力。按照配方在井浆中加入抗高温堵漏材料DXD和TXD配制堵漏浆,并调整其性能满足要求后,向井底泵入15 m3堵漏浆,关防喷器,从环空挤堵堵漏浆。LD101–E井挤堵漏浆时的地面泵压曲线如图4所示。由图4可知,地面最高泵压4.48 MPa,并稳定10 min,折算钻井液当量密度为2.40 kg/L。

    图  4  LD101–E井挤堵漏浆地面泵压曲线
    Figure  4.  Curve of surface pumping pressure during plugging slurry squeezing in Well LD101–E

    挤堵漏浆结束后,起出光钻杆,下钻控制井底当量循环密度不超过2.40 kg/L继续钻进,钻至完钻井深4 352.00 m,钻进期间未发生井漏及溢流。该井电测结果显示井底温度为198 ℃,井壁成像测井结果如图5所示。由图5可见,该井4 097.00~4 113.00 m井段发育纵向延伸的诱导裂缝,裂缝宽度为0.2 mm。LD101–E井堵漏成功,说明优化后的堵漏浆能封堵诱导裂缝,提高地层承压能力。

    图  5  LD101–E井目的层井壁成像测井结果
    Figure  5.  Results of target layer borehole wall imaging logging in Well LD101–E

    1)莺琼盆地高温高压井发生井漏的原因是钻井液安全密度窗口窄和目的层诱导裂缝发育。

    2)针对莺琼盆地高温高压井井漏的原因,采用耐高温刚性堵漏材料和耐高温弹性堵漏材料相结合的方法,构建了密度达2.40 kg/L、抗温能力200 ℃的堵漏浆,显著提高了堵漏成功率,减少了复漏的发生。

    3)分析堵漏浆的堵漏原理得知,堵漏浆中的刚性堵漏材料在诱导缝中形成架桥,弹性堵漏材料充填于剩余孔隙中,封堵了诱导裂缝,较好地防止了诱导缝的进一步延伸扩大,提高了地层承压能力。

    4)建议进一步开展用于深水高温高压井的堵漏浆研究,为南海深水高温高压油气资源的高效勘探开发提供技术支持。

  • 图  1   威远页岩气藏主要构造体系

    Figure  1.   Main structural system of Weiyuan shale gas reservoir

    图  2   威远某平台布井方式示意

    Figure  2.   Schematic diagram of the wells arrangement of a Weiyuan well-pad

    图  3   双二维井眼轨道示意

    Figure  3.   Schematic diagram of double two-dimensional wellbore trajectory

    图  4   威远五峰组—龙马溪组地球化学标准层序

    Figure  4.   Geochemical standard sequence of Weiyuan Wufeng-Longmaxi Formations

    图  5   威远X井随钻地质导向模型

    Figure  5.   Geosteering model while drilling of Well Weiyuan X

    图  6   威远页岩水力裂缝扩展与形态判别

    Figure  6.   Hydraulic fracture propagation and pattern discrimination of Weiyuan shale

    图  7   威远页岩气区块主要钻井试采指标

    Figure  7.   Main drilling and pilot production indicators in Weiyuan shale gas block

    表  1   威远区块不同类别井年产量递减率

    Table  1   Annual production decline rate of different well types in Weiyuan Block

    井类别产量/(104m3·d–1递减率,%
    第1年第2年
    Ⅰ类14.26 5.3962.2
    Ⅱ类6.592.5860.8
    Ⅲ类3.851.7155.6
    下载: 导出CSV
  • [1] 谢军. 关键技术进步促进页岩气产业快速发展:以长宁—威远国家级页岩气示范区为例[J]. 天然气工业, 2017, 37(12): 1–10. doi: 10.3787/j.issn.1000-0976.2017.12.001

    XIE Jun. Rapid shale gas development accelerated by the progress in key technologies: a case study of the Changning–Weiyuan national shale gas demonstration zone[J]. Natural Gas Industry, 2017, 37(12): 1–10. doi: 10.3787/j.issn.1000-0976.2017.12.001

    [2] 马新华,谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 161–169.

    MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161–169.

    [3] 谢军. 长宁—威远国家级页岩气示范区建设实践与成效[J]. 天然气工业, 2018, 38(2): 1–7. doi: 10.3787/j.issn.1000-0976.2018.02.001

    XIE Jun. Practices and achievements of the Changning–Weiyuan shale gas national demonstration project construction[J]. Natural Gas Industry, 2018, 38(2): 1–7. doi: 10.3787/j.issn.1000-0976.2018.02.001

    [4] 田兴旺,胡国艺,苏桂萍,等. 川南威远地区W201井古生界海相页岩矿物特征[J]. 新疆石油地质, 2018, 39(4): 409–415.

    TIAN Xingwang, HU Guoyi, SU Guiping, et al. Mineralogical characteristics of Paleozoic marine shales in Well W201 of Weiyuan Area, southern Sichuan Basin[J]. Xinjiang Petroleum Geology, 2018, 39(4): 409–415.

    [5] 武恒志,熊亮,葛忠伟,等. 四川盆地威远地区页岩气优质储层精细刻画与靶窗优选[J]. 天然气工业, 2019, 39(3): 11–20. doi: 10.3787/j.issn.1000-0976.2019.03.002

    WU Hengzhi, XIONG Liang, GE Zhongwei, et al. Fine characterization and target window optimization of high-quality shale gas reservoirs in the Weiyuan Area, Sichuan Basin[J]. Natural Gas Industry, 2019, 39(3): 11–20. doi: 10.3787/j.issn.1000-0976.2019.03.002

    [6] 马成龙,张新新,李少龙. 页岩气有效储层三维地质建模:以威远地区威202H2平台区为例[J]. 断块油气田, 2017, 24(4): 495–499.

    MA Chenglong, ZHANG Xinxin, LI Shaolong. 3D geological modeling of effective shale-gas reservoirs: taking Wei 202H2 platform of Weiyuan Area as an example[J]. Fault-Block Oil & Gas Field, 2017, 24(4): 495–499.

    [7] 赵圣贤, 石学文, 张鉴, 等. 四川盆地页岩气水平井高产地质因素分析: 2016年全国天然气学术年会, 宁夏银川, 2016-09-27—29[C].

    ZHAO Shengxian, SHI Xuewen, ZHANG Jian, et al. A study on geology factors about high production horizontal shale gas wells in Changning-Weiyuan national shales-gas demonstration area, SW China: 2016 National Natural Gas Academic Annual Conference, Yinchuan, Ningxia, September 27-29, 2016[C].

    [8] 贾成业,贾爱林,何东博,等. 页岩气水平井产量影响因素分析[J]. 天然气工业, 2017, 37(4): 80–88. doi: 10.3787/j.issn.1000-0976.2017.04.010

    JIA Chengye, JIA Ailin, HE Dongbo, et al. Key factors influencing shale gas horizontal well production[J]. Natural Gas Industry, 2017, 37(4): 80–88. doi: 10.3787/j.issn.1000-0976.2017.04.010

    [9] 李彬,付建红,秦富兵,等. 威远区块页岩气" 井工厂”钻井技术[J]. 石油钻探技术, 2017, 45(5): 13–18.

    LI Bin, FU Jianhong, QIN Fubing, et al. Well pad drilling technology in the Weiyuan Shale Gas Block[J]. Petroleum Drilling Techniques, 2017, 45(5): 13–18.

    [10] 赵国英. 水平井" 工厂化”部署与设计优化:以四川威远页岩气藏为例[J]. 天然气勘探与开发, 2018, 41(1): 51–57.

    ZHAO Guoying. Deployment and optimization of " factory-like” horizontal well: a case study on Weiyuan shale gas reservoirs, Sichuan Basin[J]. Natural Gas Exploration and Development, 2018, 41(1): 51–57.

    [11] 刘乃震,王国勇. 四川盆地威远区块页岩气甜点厘定与精准导向钻井[J]. 石油勘探与开发, 2016, 43(6): 978–985.

    LIU Naizhen, WANG Guoyong. Shale gas sweet spot identification and precise geo-steering drilling in Weiyuan Block of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(6): 978–985.

    [12] 陈云金,张明军,李微,等. 体积压裂与常规压裂投资与效益的对比分析:以川南地区及长宁–威远页岩气示范区为例[J]. 天然气工业, 2014, 34(10): 128–132. doi: 10.3787/j.issn.1000-0976.2014.10.020

    CHEN Yunjin, ZHANG Mingjun, LI Wei, et al. A comparative analysis of investment and benefit between conventional fracturing and fracturing by stimulated reservoir volume(SRV): cases history of gas/shale gas wells in the Southern Sichun Basin[J]. Natural Gas Industry, 2014, 34(10): 128–132. doi: 10.3787/j.issn.1000-0976.2014.10.020

    [13] 贺秋云. 长宁–威远区块页岩气井地面测试流程优化影响因素分析[J]. 钻采工艺, 2017, 40(6): 38–40,55. doi: 10.3969/J.ISSN.1006-768X.2017.06.12

    HE Qiuyun. Factors affecting well testing surface flow scheme optimization at Changning–Weiyuan Shale Gas Block[J]. Drilling & Production Technology, 2017, 40(6): 38–40,55. doi: 10.3969/J.ISSN.1006-768X.2017.06.12

    [14] 聂靖霜,雷宗明,王华平,等. 威远构造页岩气水平井钻井井身结构优化探讨[J]. 重庆科技学院学报(自然科学版), 2013, 15(2): 97–100. doi: 10.3969/j.issn.1673-1980.2013.02.024

    NIE Jingshuang, LEI Zongming, WANG Huaping, et al. Optimi-zation of casing program for shale gas horizontal well in Weiyuan Structure[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2013, 15(2): 97–100. doi: 10.3969/j.issn.1673-1980.2013.02.024

    [15] 何涛,李茂森,杨兰平,等. 油基钻井液在威远地区页岩气水平井中的应用[J]. 钻井液与完井液, 2012, 29(3): 1–5, 91. doi: 10.3969/j.issn.1001-5620.2012.03.001

    HE Tao, LI Maosen, YANG Lanping, et al. Application of oil-based drilling fluid in shale gas horizontal well in district of Weiyuan[J]. Drilling Fluid & Completion Fluid, 2012, 29(3): 1–5, 91. doi: 10.3969/j.issn.1001-5620.2012.03.001

    [16] 李茂森,刘政,胡嘉. 高密度油基钻井液在长宁–威远区块页岩气水平井中的应用[J]. 天然气勘探与开发, 2017, 40(1): 88–92.

    LI Maosen, LIU Zheng, HU Jia. Application of high density oil-based drilling fluid in shale gas horizontal wells of Changning-Weiyuan Bolck[J]. Natural Gas Exploration and Development, 2017, 40(1): 88–92.

    [17] 刘宏宇. 威远页岩气钻井液技术实践与认识[J]. 重庆科技学院学报(自然科学版), 2018, 20(4): 53–55. doi: 10.3969/j.issn.1673-1980.2018.04.012

    LIU Hongyu. Practice and understanding of shale gas drilling fluid technology in Weiyuan[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2018, 20(4): 53–55. doi: 10.3969/j.issn.1673-1980.2018.04.012

    [18] 陈海力,王琳,周峰,等. 四川盆地威远地区页岩气水平井优快钻井技术[J]. 天然气工业, 2014, 34(12): 100–105. doi: 10.3787/j.issn.1000-0976.2014.12.014

    CHEN Haili, WANG Lin, ZHOU Feng, et al. Rapid and efficient drilling of horizontal wells in the Weiyuan Shale Gas Field, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 100–105. doi: 10.3787/j.issn.1000-0976.2014.12.014

    [19] 骆新颖. 长宁威远区块页岩气水平井提速技术研究[D]. 成都: 西南石油大学, 2017.

    LUO Xinying. Research on speed raising technology if shale gas in Changning and Weiyuan Block[D]. Chengdu: Southwest Petroleum University, 2017.

    [20] 孙永兴, 乔李华, 杨博仲, 等.威远–长宁地区页岩气长水平段水平井防卡钻对策研究: 2017年全国天然气学术年会, 浙江杭州, 2017-10-19—20[C].

    SUN Yongxing, QIAO Lihua, YANG Bozhong, et al. Study on anti-sticking countermeasures of horizontal wells in long horizontal section of shale gas in Weiyuan-Changning Area: 2017 National Natural Gas Academic Annual Conference, Hangzhou, Zhejiang, October 19-20, 2017[C].

    [21] 袁进平,于永金,刘硕琼,等. 威远区块页岩气水平井固井技术难点及其对策[J]. 天然气工业, 2016, 36(3): 55–62. doi: 10.3787/j.issn.1000-0976.2016.03.008

    YUAN Jinping, YU Yongjin, LIU Shuoqiong, et al. Technical diffi-culties in the cementing of horizontal shale gas wells in Weiyuan Block and the countermeasures[J]. Natural Gas Industry, 2016, 36(3): 55–62. doi: 10.3787/j.issn.1000-0976.2016.03.008

    [22] 刘阳. 威远地区页岩气水平井固井技术研究与应用[J]. 非常规油气, 2017, 4(3): 93–98. doi: 10.3969/j.issn.2095-8471.2017.03.016

    LIU Yang. The research and application of shale gas horizontal well cementing technology in Weiyuan Area[J]. Unconventional Oil & Gas, 2017, 4(3): 93–98. doi: 10.3969/j.issn.2095-8471.2017.03.016

    [23] 张顺平, 张森, 覃毅, 等. 威远页岩气水平井高密度防窜水泥浆固井技术[J]. 钻井液与完井液, 2016, 33(1): 63–67.

    ZHANG Shunping, ZHANG Sen, QIN Yi, et al. Anti-channeling high density cement slurry technology for horizontal shale gas well in Weiyuan[J]. Drilling Fluid & Completion Fluid, 2016, 33(1): 63–67.

    [24] 张迪. 水平井地质导向技术在四川威远204井区页岩气开发中的应用[J]. 石油地质与工程, 2015, 29(6): 111–113, 145. doi: 10.3969/j.issn.1673-8217.2015.06.030

    ZHANG Di. Application of geo-steering technology for horizontal well of shale gas development in Weiyuan-204 Well Block in Sichuan[J]. Petroleum Geology and Engineering, 2015, 29(6): 111–113, 145. doi: 10.3969/j.issn.1673-8217.2015.06.030

    [25] 孙坤忠,刘江涛,王卫,等. 川东南JA侧钻水平井地质导向技术[J]. 石油钻探技术, 2015, 43(4): 138–142. doi: 10.3969/j.issn.1672-7703.2018.02.008

    SUN Kunzhong, LIUu Jiangtao, WANG Wei,et al. eosteering drilling techniques of horizontal sidetracking Well JA, Southeast Sichuan[J]. Petroluem Drilling Techniques, 2015, 43(4): 138–142. doi: 10.3969/j.issn.1672-7703.2018.02.008

    [26] 辛勇亮. 威远地区页岩气水平井压裂工艺技术研究[J]. 油气井测试, 2017, 26(2): 64–67,78. doi: 10.3969/j.issn.1004-4388.2017.02.018

    XIN Yongliang. Research of fracturing technology for shale gas horizontal well at Weiyuan Area[J]. Well Testing, 2017, 26(2): 64–67,78. doi: 10.3969/j.issn.1004-4388.2017.02.018

    [27] 巫芙蓉, 闫媛媛, 曹立斌.微地震监测在水平井多级压裂施工参数调整中的应用: 以中国四川盆地威远页岩气为例: CPS/SEG北京2018国际地球物理会议暨展览, 北京: 2018-04-24—27[C].

    WU Furong, YAN Yuanyuan, CAO Libin. Application of microseismic monitoring in adjustment of multistage fracturing construction parameters of horizontal wells: a case study of Weiyuan shale gas in Sichuan Basin, China: CPS/SEG Beijing 2018 International Geophysical Conference and Exhibition, Beiijing, April 24-27, 2018[C].

    [28] 袁灿明,龚蔚,李雪飞. 威远页岩气藏加砂压裂困难井影响因素研究[J]. 钻采工艺, 2019, 42(2): 72–75.

    YUAN Canming, GONG Wei, LI Xuefei. Study on factors affecting hydraulic fracturing in shale gas wells at Weiyuan[J]. Drilling & Production Technology, 2019, 42(2): 72–75.

    [29] 何启平,尹丛彬,李嘉,等. 威远–长宁地区页岩气压裂返排液回用技术研究与应用[J]. 钻采工艺, 2016, 39(1): 118–121. doi: 10.3969/J.ISSN.1006-768X.2016.01.35

    HE Qiping, YIN Congbin, LI Jia, et al. Research and application of fracturing fluid flowback technologies for shale gas exploration in Weiyuan-Changning Block[J]. Drilling & Production Technology, 2016, 39(1): 118–121. doi: 10.3969/J.ISSN.1006-768X.2016.01.35

    [30] 刘飞.长宁–威远构造页岩气井返排流程优化设计和返排特征分析: 2016年全国天然气学术年会, 宁夏银川, 2016-09-27—29[C].

    LIU Fei. Optimum design and characteristic analysis of return flow of shale gas wells in Changning-Weiyuan Structure: 2016 National Natural Gas Academic Annual Conference, Yinchuan, Ningxia, September 27-29, 2016[C].

    [31] 郭伟. 四川威远区块页岩气水平井产量差异分析[J]. 科学技术与工程, 2018, 18(1): 228–233. doi: 10.3969/j.issn.1671-1815.2018.01.040

    GUO Wei. Differentiation analysis on shale gas production of the horizontal wells in Sichuan Weiyuan Block[J]. Science Technology and Engineering, 2018, 18(1): 228–233. doi: 10.3969/j.issn.1671-1815.2018.01.040

    [32] 王科, 李海涛, 李留杰, 等.四川盆地威远区块页岩气井经验递减法研究[J/OL].天然气地球科学, 2019-03-20.http://kns.cnki.net/kcms/detail/62.1177.TE.20190428.1210.016.html.

    WANG Ke, LI Haitao, LI Liujie, et al. Research on empirical decline methods for shale gas wells in Weiyuan Block of the Sichuan Basin[J/OL]. 2019-03-20. http://kns.cnki.net/kcms/detail/62.1177.TE.20190428.1210.016.html.

    [33] 王川杰,袁续祖,高威,等. 威远气田页岩气井产量递减分析方法研究[J]. 天然气勘探与开发, 2014, 37(1): 56–59. doi: 10.3969/j.issn.1673-3177.2014.01.014

    WANG Chuanjie, YUAN Xuzu, GAO Wei, et al. Methods to analyze production decline of shale-gas wells in Weiyuan Gas-field[J]. Natural Gas Exploration and Development, 2014, 37(1): 56–59. doi: 10.3969/j.issn.1673-3177.2014.01.014

  • 期刊类型引用(2)

    1. 王鹏. 海洋在役井筒完整性风险量化分级研究. 中国石油和化工标准与质量. 2022(02): 1-3+6 . 百度学术
    2. 何汉平. 油气井井筒完整性系统风险评估方法. 石油钻探技术. 2017(03): 72-76 . 本站查看

    其他类型引用(1)

图(7)  /  表(1)
计量
  • 文章访问数:  1810
  • HTML全文浏览量:  1596
  • PDF下载量:  192
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-03-19
  • 网络出版日期:  2019-07-22
  • 刊出日期:  2019-06-30

目录

/

返回文章
返回