Loading [MathJax]/jax/output/SVG/jax.js

顺北油气田超深碳酸盐岩储层深穿透酸压技术

蒋廷学, 周珺, 贾文峰, 周林波

蒋廷学, 周珺, 贾文峰, 周林波. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术, 2019, 47(3): 140-147. DOI: 10.11911/syztjs.2019058
引用本文: 蒋廷学, 周珺, 贾文峰, 周林波. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术, 2019, 47(3): 140-147. DOI: 10.11911/syztjs.2019058
JIANG Tingxue, ZHOU Jun, JIA Wenfeng, ZHOU Linbo. Deep Penetration Acid-Fracturing Technology for Ultra-Deep Carbonate Oil & Gas Reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140-147. DOI: 10.11911/syztjs.2019058
Citation: JIANG Tingxue, ZHOU Jun, JIA Wenfeng, ZHOU Linbo. Deep Penetration Acid-Fracturing Technology for Ultra-Deep Carbonate Oil & Gas Reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140-147. DOI: 10.11911/syztjs.2019058

顺北油气田超深碳酸盐岩储层深穿透酸压技术

基金项目: 国家科技重大专项“超深井碳酸盐岩储层改造及测试关键技术”(编号:2017ZX05005–005–004)与中国石化科技攻关项目“顺北高温高压碳酸盐岩储层改造技术”(编号:P17004–2)、“顺北1区断溶体油藏储层改造技术研究与应用”(编号:P18022–2)联合资助
详细信息
    作者简介:

    蒋廷学(1969—),男,江苏东海人,1991年毕业于石油大学(华东)采油工程专业,2007年获中国科学院渗流流体力学研究所流体力学专业博士学位,教授级高级工程师,主要从事水力压裂机理、优化设计方法、现场试验及后评估方面的研究工作。系本刊编委。E-mail:jiangtx.sripe@sinopec.com

  • 中图分类号: TE357.2

Deep Penetration Acid-Fracturing Technology for Ultra-Deep Carbonate Oil & Gas Reservoirs in the Shunbei Oil and Gas Field

  • 摘要:

    顺北油气田碳酸盐岩储层具有超深、高温和高破裂压力等特点,酸压改造时存在酸蚀裂缝短、导流能力递减快等问题,为此,提出了应用深穿透酸压技术对超深碳酸盐岩储层进行改造的技术思路,并进行了技术攻关研究。合成了酸用稠化剂、高温缓蚀剂,研制了抗高温清洁酸,并进行了酸液非均匀刻蚀导流能力试验,分析了在闭合应力为20~90 MPa时仅注入清洁酸、仅注入胶凝酸和先注入清洁酸再注入胶凝酸3种注酸方式下裂缝的导流能力;同时,研究了酸液非均匀驱替流动机理,优化了非均匀刻蚀酸压工艺参数。研究发现,采用“清洁酸+胶凝酸”组合注入模式,不仅酸蚀裂缝导流能力有较大幅度提高,有效缝长也增加近1倍。超深碳酸盐岩储层深穿透酸压技术在顺北油气田进行了5井次现场试验,酸压施工成功率及有效率均达到100%,酸压后平均日产油107.7 m3,平均酸蚀缝长133.20 m,取得了明显的储层改造效果。研究认为,顺北油气田超深碳酸盐岩储层深穿透酸压技术可极大改善超深碳酸盐岩酸压效果,可为国内类似储层的酸压改造提供借鉴。

    Abstract:

    Carbonate reservoirs in the Shunbei Oil and Gas Field are characterized by ultra-deep, high temperature and high fracturing pressure gradient, which pose problems in short acid-etched fractures and rapid conductivity decline. In order to solve these problems, a team studied a deep penetration acid-fracturing technology for ultra-deep carbonate reservoirs, and they proposed a deep penetration acid-fracturingtechnique. Using a synthetic acid thickener and high temperature corrosion inhibitor, a high temperature resistant clean acid was developed. The acid fluid non-uniform etching conductivity test was carried out, and fracture conductivities with clean acid, gelled acid, and clean acid followed by gelled acid were analyzed at a closure stress of 20–90 MPa, respectively. The mechanism of the non-uniform displacement of acid fluid was studied, and the acid-fracturing process parameters of non-uniform etching were optimized. The study suggests that "clean acid + gelled acid" combined injection can greatly improve the conductivity of acid-etching fractures as well as nearly doubling effective fracture length. This new deep penetration acid-fracturing technology has been applied in 5 wells in the ultra-deep carbonate reservoir in Shunbei Oil and Gas Field. The success rate and effectiveness of the acid-fracturing operation reached 100% with post-frac production rate 107.7 m3/d, and average length 133.20 m. Consequently, this acid-fracturing technology can greatly improve the acid-fracturing effect in ultra-deep carbonate reservoirs, which provides a reference or best practices guidance in the acid-fracturing stimulation of similar reservoirs in China.

  • 目前,低渗透油气藏是我国油气开发的重点,但该类油气藏具有储层地质年代久远、构造复杂、埋藏深和岩石坚硬等特点,所以存在一系列钻井难点。其中,在确保钻井安全的前提下,提高机械钻速、降低钻井成本是面临的主要问题[17]。目前,国外的低渗透地层钻井技术较为先进,如垂直钻井系统、旋转导向钻井系统、高效PDC钻头、高效动力钻具及相关的地面钻井装备,但相关工具和设备只出租不出售,且租用价格高昂;国内主要采用常规PDC钻头和井下动力钻具,这些工具使用成本较低、应用范围较广,但技术水平相对落后,提高机械钻速的能力较低,难以满足低渗透油气藏高效开发的需求[810]。为了在一定程度上解决上述问题,笔者基于分级破岩的方法,在PDC钻头破岩机理及“PDC钻头+螺杆”复合钻井技术的基础上,对螺杆钻具及PDC钻头进行了优化,设计了适用于ϕ215.9,ϕ241.3和ϕ311.1 mm井眼的双级双速钻井工具,并进行了现场试验,结果证明,双级双速钻井工具既能充分发挥PDC钻头的优势,又不会改变现有钻井工艺和设备,性价比高,提速效果好。

    从钻头破岩原理讲,双级双速钻井工具与常规PDC钻头没有区别,都是利用PDC钻头犁削破岩。两者的主要区别是破岩的具体方式不同,双级双速钻井工具有两级直径不同的钻头,利用较大直径的一级钻头钻出导眼,释放岩石内应力,然后利用较小直径的二级钻头跟进破岩。因为一级钻头破岩过程中使井底岩石的应力场发生了变化,岩石的抗破碎强度降低,所以二级钻头的破岩效率得到提高,从而提高了整体钻进效率。

    双级双速钻井工具与单级钻头钻井时的井底岩石应力场分布如图1所示。

    图  1  井底岩石应力场分布云图
    Figure  1.  Stress distribution of bottom hole rock distribution

    图1可以看出,双级双速钻井工具钻井时的井底应力扩散区域明显大于单级钻头钻井,应力集中度也高于单级钻头钻井。这表明一级钻头钻出导眼使井底岩石内应力释放,岩石内应力大幅降低,使井底岩石的抗破碎强度大幅降低。因此,在相同钻井参数下,双级双速钻井工具的破岩效率高于常规单级钻头。

    双级双速钻井工具主要有同心式和偏心式2种,该工具在“PDC钻头+螺杆”复合钻井的基础上进行设计的,利用常规动力钻具驱动双级PDC钻头破岩,既充分发挥了PDC钻头的破岩优势[11],又具有结构简单可靠、成本低的特点。

    美国NOV公司开展了同心式双级钻井工具的破岩研究[9],并研制了双级钻头,如图2所示。通过室内及现场试验,发现该钻头主要有以下2方面的优点:1)有利于提高钻井的稳定性,减小钻井过程中的振动;2)由于一级钻头释放了二级钻头钻进时的压应力,能够大幅提高钻进速度。NOV公司双级钻头的钻井数据及与常规PDC钻头的钻速对比情况见表1

    图  2  NOV公司研制的双级钻头
    Figure  2.  Two-stage drill bit developed by NOV
    表  1  NOV公司双级钻头的钻井数据及与常规PDC钻头的钻速对比
    Table  1.  Drilling data of NOV's two-stage drill bit and the comparison of ROP with conventional PDC bit
    序号 钻头直径/mm 地层 钻压/kN 转速/(r·min–1 进尺/m 钻进时间/h 机械钻速/(m·h–1
    一级钻头 二级钻头 双级钻头 PDC钻头
    1 171.4 215.9 砂岩 54~68 230 171.30 36.5 4.7 3.2
    2 127.0 165.1 砂质页岩 9~14 80 487.30 109.5 4.5 3.3
    3 177.8 250.8 砂质页岩 68~82 65 1 101.60 118.5 9.3 6.4
    4 171.4 215.9 砂岩页岩 59~100 70~140 174.00 25.6 6.8 3.6
    下载: 导出CSV 
    | 显示表格

    表1可知,NOV公司研制的双级钻头能够大幅提高机械钻速,与常规PDC钻头相比,最高可提高88.9%。

    NOV公司研制出一种同心分体式双级双速钻井工具,如图3所示。该钻井工具的优点为[1213]:1)一级钻头较二级钻头具有更高的转速,有利于提高一级钻头的破岩效率,同时降低二级钻头的破岩难度,提高二级钻头钻速;2)双级钻头转向相反时,有助于降低钻柱的附加扭矩;3)一级钻压与二级钻压的匹配达到最优时,更有利于快速钻进;4)转向相同时,当一级钻头转速高于二级钻头转速时,有利于延长钻头寿命;5)适用于多类型钻头组合。

    图  3  同心分体式双级双速钻井工具示意
    Figure  3.  Schematic of concentric split two-stage and two-speed drilling tool

    另外,Baker Hughes公司针对同心分体式[10]双级钻井工具提出了多种专用工具设计方案,如图4所示。

    图  4  Baker Hughes公司设计的同心分体式双级双速钻井工具
    Figure  4.  Concentric split two-stage and two-speed drilling tool designed by Baker Hughes

    但是,截至目前,国外也仅仅是提出了同心分体式双级双速钻井工具的技术方案,未见相关样机及现场应用方面的报道。

    根据相关报道[11],国外于2014年开始研究偏心分体式双级钻井工具,但国内在这方面的研究目前尚处于空白。相关资料表明[11],偏心式双级双速钻井技术具有以下优点:1)能够进一步降低岩石破碎难度;2)能够克服钻头中心线速度慢、切削效率低的不足,有利于大幅提高钻头切削效率;3)能够减弱钻柱的振动[13],保持钻井过程的平稳性。

    2016年,胜利油田开始研究双级双速钻井工具,在设计排量、输出扭矩与转速和钻进工具长度等参数后,结合现场实际需要,设计了双级双速钻井工具,该工具采用螺杆钻具驱动两级钻头,两级钻头均为常规PDC钻头,均正向转动。

    钻井过程中,钻井液在管柱中自上而下流经双级双速钻井工具,驱动钻井工具顺时针旋转。因此,螺杆钻具转子自转速度的计算公式为:

    γ=2πzN(N+1)h (1)

    式中:γ为转子自转转速,r/min;z为螺杆钻具转子密封线下移距离,m;N为转子头数;h为转子与定子的螺距,m。

    由式(1)可以得到螺杆钻具转子自转一周后密封线下移距离的计算公式:

    H=NTs=(N+1)Tr (2)

    式中:H为螺杆钻具转子自转1周后密封线的下移距离,m;Ts为定子导程,m;Tr为转子导程,m。

    定子线性包裹面积减去转子线性包容面积,即为转子的截流面积,则螺杆钻具每转排量的计算公式为:

    q=AGNTs=(AsAr)NTs (3)

    式中:q为螺杆钻具的每转排量,m3/s;AG为转子截流面积,m2As为定子线性包裹面积,m2

    螺杆钻具的输出扭矩即为钻头的扭矩,其与压降、每转排量有关,考虑现场实际工况,设计计算相关参数时忽略螺杆钻具内部传动轴等部件间的摩擦。因此,螺杆钻具输出扭矩的计算公式为:

    MT=12πΔpq (4)

    式中:MT为螺杆钻具输出扭矩,N·m; Δ p为螺杆钻具的压降,MPa。

    螺杆钻具输出转速的计算公式为:

    n=60Qqηv (5)

    式中:n为螺杆钻具的输出转速,r/min;Q为排量,m3/s;ηv为螺杆钻具定子与转子的容积效率。

    随着螺杆钻具转子的不断转动,转子在相对定子转过转角α时,随着转角不断增大,转子与定子之间的过流面积逐渐缩小,转子与定子之间的过流面也是逐渐关闭的,那么沿着轴向累计,即可计算出螺杆钻具的长度。

    L=NTs2πni=1αi (6)

    式中:L为螺杆钻具的长度,m。

    根据螺杆钻具内摆线等距线型的要求,即可用式(6)计算出双级双速钻井工具的长度。

    考虑现场实际工况,结合国内现有螺杆钻具的制造工艺,设计了双级双速钻井工具的总体结构。该钻井工具主要由旁通阀、防脱保护模块、螺杆动力模块、双级双速输出轴总成模块和同心分体式两级PDC钻头组成。

    根据现场钻井的实际需要,分别设计了适用于ϕ215.9,ϕ241.3和ϕ311.1 mm井眼的双级双速钻井工具。其操作方法与常规钻井工艺基本相同,即:启动钻井泵,双级双速钻井工具在高压钻井液的驱动下,利用钻头的旋转破岩。

    1)适用于ϕ215.9 mm井眼的双级双速钻井工具,长度7 600.0 mm,质量950 kg,压降3.0~3.5 MPa,输出转速100~140 r/min,输出扭矩6 300 N·m。

    2)适用于ϕ241.3 mm井眼的双级双速钻井工具,长度7 500.0 mm,质量1 200 kg,压降3.0~3.5 MPa,输出转速100~150 r/min,输出扭矩8 500 N·m。

    3)适用于ϕ311.1 mm井眼的双级双速钻井工具,长度7 500.0 mm,质量1 500 kg,压降3.0~3.5 MPa,输出转速100~150 r/min,输出扭矩9 500 N·m。

    笔者所设计的双级双速钻井工具在胜利油田营66–斜98井、营2–斜更9井和夏52–斜227井等3口井进行了现场试验。试验结果表明,双级双速钻井工具应用效果良好,不但具有稳斜、稳压作用,而且提速效果显著。

    营66–斜98井最大井斜角35°,稳斜段钻遇东营组,设计井身结构见表2。该井利用常规钻井技术钻进时蹩跳钻频繁,钻压波动较大。因此,在该井2 373.00~2 523.50 m井段进行了双级双速钻井工具试验,其目的是,在满足井眼轨迹控制要求的同时,是否能稳定钻压、提高钻速。

    表  2  营66–斜98井的井身结构
    Table  2.  Casing program of Well Y66-X98
    开次 钻头直径/mm 井深/m 套管直径/mm 套管下深/m
    一开 346.1 301.00 273.1 300.00
    二开 215.9 2 520.57 139.7 2 518.00
    下载: 导出CSV 
    | 显示表格

    试验井段钻压20~40 kN,排量27~30 L/s,泵压11~13 MPa。钻进过程中钻压平稳,泵压稳定无异常波动,钻具上提下放顺畅,大钩载荷正常;完成试验后将工具起出井眼,检查钻井工具、钻头都无损伤。

    营66–斜98井采用双级双速钻井工具钻进井段的机械钻速与邻井使用常规钻具钻进的相同井段的机械钻速进行了对比,结果如图5所示。

    图  5  营66–斜98井双级双速钻井工具与邻井常规钻具钻速对比
    Figure  5.  Comparison of ROP between two-stage and two-speed drilling tool in Well Y66-X98 and the conventional drilling tools in offset wells

    图5可知,采用双级双速钻井工具后机械钻速提高了61.3%,提速效果显著。

    营2–斜更9井最大井斜角28°,下部井段扭方位,是一口典型的三维井眼定向井,设计井身结构见表3。该井采用常规钻井技术钻进时,蹩跳钻频繁,钻压波动较大,因此在1 434.00~1 750.22 m井段进行双级双速钻井工具试验,钻具组合为ϕ215.9 mm双级双速钻井工具+回压阀(411×410)+ϕ177.8 mm无磁钻铤+ϕ214.3 mm螺旋稳定器+ϕ177.8 mm钻铤×2柱+ϕ165.1 mm钻铤×2柱+钻杆。

    表  3  营2–斜更9井设计井身结构
    Table  3.  Casing program of Well Y2-XG9
    开次 钻头直径/mm 井深/m 套管直径/mm 套管下深/m
    一开 346.1 351.00 273.1 350.00
    二开 215.9 2 983.02 139.7 2 980.00
    下载: 导出CSV 
    | 显示表格

    试验井段钻压20~30 kN,排量27~30 L/s,泵压11~12 MPa。钻进过程中钻压平稳,泵压稳定,试验后检查工具、钻头都无损伤。营2-斜更9井使用双级双速钻井工具钻进井段的机械钻速与邻井使用常规钻具钻进相同井段的机械钻速进行了对比,结果如图6所示。

    图  6  营2–斜更9井双级双速钻井工具与邻井常规钻具钻速对比
    Figure  6.  Comparison of ROP between two-stage two-speed drilling tool in Well Y2-XG9 and the conventional drilling tools in offset wells

    图6可知,采用双级双速钻井工具后机械钻速提高了58.9%,提速效果显著。

    夏52–斜227井设计的井身结构见表4。其中,二开直井段设计井深1 350.00 m。为了验证双级双速钻井工具在该井直井段钻进过程中的提速、防斜和稳定钻压的效果,在310.00~1 210.50 m井段(直井段)进行了试验,钻具组合为ϕ215.9 mm双级双速钻井工具+回压阀(411×410)+ϕ177.8 mm无磁钻铤+ϕ214.3 mm螺旋稳定器+ϕ177.8 mm钻铤×2柱+ϕ165.1 mm钻铤×2柱+钻杆。

    表  4  夏52-斜227井的井身结构
    Table  4.  Casing program of well X52-X227
    开次 钻头直径/mm 井深/m 套管直径/mm 套管下深/m
    一开 346.1 351.00 273.1 350.00
    二开 215.9 3 226.52 139.7 3 223.00
    下载: 导出CSV 
    | 显示表格

    试验井段钻压20~30 kN,排量27~30 L/s,泵压11~12 MPa。钻进过程中钻压平稳,泵压稳定,直井段防斜打直效果明显,机械钻速相比邻井平均提高120.9%(见图7),试验后检查双级双速钻井工具未损坏。

    图  7  夏52–斜227井双级双速钻井工具与邻井常规钻具钻速对比
    Figure  7.  Comparison of ROP between two-stage two-speed drilling tool in Well X52-X227 and the conventional drilling tools in offset wells

    双级双速钻井工具在上述3口井完成试验后,钻头有轻度磨损,再次开泵测试,发现该工具的动力性有所降低,分析认为螺杆钻具部分达到使用寿命。3口井的现场试验结果表明,机械钻速平均提高80.37%,提速效果显著。

    1)双级双速钻井工具利用一级钻头破岩并钻出导眼,然后用二级钻头钻进地层。一级钻头钻出导眼释放井底岩石内应力,岩石抗破碎强度降低,使二级钻头钻进更为容易,从而实现提高钻井效率的目的。

    2)基于已有研究成果,根据现场钻井的实际需要,分别设计了适用于ϕ215.9,ϕ241.3和ϕ311.1 mm井眼的双级双速钻井工具。

    3)胜利油田3口井的现场试验表明,双级双速钻井工具提速效果显著,试验井段平均提速80.37%,其使用寿命达到142.4 h,钻压、泵压及工具性能稳定,安全可靠性高。

    4)建议开展专用螺杆钻具和PDC钻头性能及匹配性的研究,以充分发挥双级双速钻井工具成本低、效率高的优势,为低渗透油气藏的高效开发提供技术支撑。

  • 图  1   酸用稠化剂分子结构

    Figure  1.   Molecular structure of acid thickener

    图  2   3种注酸方式下的裂缝导流能力对比

    Figure  2.   Comparison on the conductivities of fractures under three acid injection modes

    图  3   不同注酸方式下的酸蚀有效缝长对比曲线

    Figure  3.   Comparison curves of the effective length of acid etched fractures under different acid injection modes

    图  4   用不同黏度比液体驱替时裂缝内酸液的分布情况

    Figure  4.   Distribution of acid fluid when displaced with fluids at different viscosity ratios

    图  5   不同黏度比下裂缝中酸液的非均匀程度

    Figure  5.   Non-uniformity of acid fluid in fractures at different viscosity ratios

    图  6   高黏度和低黏度酸液排量比对裂缝中酸液分布的影响

    Figure  6.   Effect of the flowrate ratio of high/low viscosity acid fluids on the distribution of acid in fractures

    图  7   高、低黏度酸液液量比对裂缝中酸液分布情况的影响

    Figure  7.   Effect of the displacement volumes of high/low viscosity acid fluids on the distribution of acid in fractures

    图  8   “压裂液+酸液”与“酸液+酸液”二级注入模式下的缝宽和导流能力

    Figure  8.   Fracture width and conductivity under the secondary injection modes of “acid + fracturing fluid” and “acid + acid”

    图  9   “压裂液+酸液”与“酸液+酸液”二级注入模式下的缝长和缝高

    Figure  9.   Fracture length and height under the secondary injection modes of “acid + fracturing fluid” and “acid + acid”

    图  10   X1井酸压后裂缝扩展情况模拟及G函数分析结果

    Figure  10.   Simulation of fracture propagation after acid fracturing and the results of G function analysis in Well X1

    表  1   顺北油气田超深碳酸盐岩储层深穿透酸压技术试验效果

    Table  1   Experimental results of deep penetration acid-fracturing technology in ultra-deep carbonate reservoirs of the Shunbei Oil and Gas Field

    井号储层垂深/m储层温度/℃酸蚀缝长/m初期产量/(t·d–1
    X17 824.00162143.7121.6
    X27 647.00157137.8142.7
    X37 766.00166125.989.9
    X47 386.00153125.873.9
    X57 654.00162132.6110.5
    下载: 导出CSV
  • [1] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207–216.

    JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207–216.

    [2] 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878–888.

    DENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei Area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878–888.

    [3] 刘哲. 顺北弱挥发性碳酸盐岩油藏合理开发方式研究[D]. 成都: 成都理工大学, 2018.

    LIU Zhe. The reasonable development mode of weak volatile oil and carbonate reservoir in Shunbei Zone[D]. Chengdu: Chengdu University of Technology, 2018.

    [4] 刘建坤,蒋廷学,周林波,等. 碳酸盐岩储层多级交替酸压技术研究[J]. 石油钻探技术, 2017, 45(1): 104–111.

    LIU Jiankun, JIANG Tingxue, ZHOU Linbo, et al. Multi-stage alternative acid fracturing technique in carbonate reservoirs stimulation[J]. Petroleum Drilling Techniques, 2017, 45(1): 104–111.

    [5] 王永辉, 李永平, 程兴生, 等. 高温深层碳酸盐岩储层酸化压裂改造技术[J]. 石油学报, 2012, 33(supplement 2): 166–173.

    WANG Yonghui, LI Yongping, CHENG Xingsheng, et al. A new acid fracturing technique for carbonate reservoirs with high-temperature and deep layer[J]. Acta Petrolei Sinica, 2012, 33(supplement 2): 166–173.

    [6] 张义, 赵海洋, 张烨. 超深高温高破裂压力储层酸压关键技术[J]. 石油钻采工艺, 2012, 34(2): 74–76. doi: 10.3969/j.issn.1000-7393.2012.02.020

    ZHANG Yi, ZHAO Haiyang, ZHANG Ye. Key technologies of acid-fracturing for ultra-deep reservoirs with high temperature and high fracture pressure[J]. Oil Drilling & Production Technology, 2012, 34(2): 74–76. doi: 10.3969/j.issn.1000-7393.2012.02.020

    [7] 王洋,袁清芸,李立. 塔河油田碳酸盐岩储层自生酸深穿透酸压技术[J]. 石油钻探技术, 2016, 44(5): 90–93.

    WANG Yang, YUAN Qingyun, LI Li. Deep penetrating acid fracturing involving self-generated acid in carbonate reservoirs of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(5): 90–93.

    [8] 何青, 李克智, 徐兵威, 等. 致密碳酸盐岩气藏前置酸加砂酸压工艺研究及应用[J]. 钻采工艺, 2014, 37(5): 71–73. doi: 10.3969/J.ISSN.1006-768X.2014.05.23

    HE Qing, LI Kezhi, XU Bingwei, et al. Research and application of pad acid sand fracturing technology tight carbonate reservoir[J]. Drilling & Production Technology, 2014, 37(5): 71–73. doi: 10.3969/J.ISSN.1006-768X.2014.05.23

    [9] 李小刚, 杨兆中, 陈锐, 等. 前置液酸压缝中酸液指进的物模与分形研究[J]. 西南石油大学学报, 2007, 29(6): 105–108. doi: 10.3863/j.issn.1674-5086.2007.06.025

    LI Xiaogang, YANG Zhaozhong, CHEN Rui, et al. Physical simulation and fractal feactures of acid fingering in acid fracturing treatment[J]. Journal of Southwest Petroleum University, 2007, 29(6): 105–108. doi: 10.3863/j.issn.1674-5086.2007.06.025

    [10] 李小蓉. 白云岩储层多级交替注入酸压设计计算软件研究[J]. 钻采工艺, 2000, 23(4): 53–55, 73.

    LI Xiaorong. Study on acid fracturing design software in alternate injection of dolomite reservoir[J]. Drilling & Production Technology, 2000, 23(4): 53–55, 73.

    [11] 王栋, 徐心茹, 杨敬一, 等. 普光气田多级交替注入闭合酸压技术及其应用[J]. 油气地质与采收率, 2012, 19(6): 108–110. doi: 10.3969/j.issn.1009-9603.2012.06.026

    WANG Dong, XU Xinru, YANG Jingyi, et al. Multistage alternating injection closed acid fracturing technology and its applicationgs in Puguang Gas Field[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(6): 108–110. doi: 10.3969/j.issn.1009-9603.2012.06.026

    [12] 李小刚, 杨兆中, 蒋海, 等. 酸压裂缝内酸液指进的计算机模拟与分形研究[J]. 西安石油大学学报(自然科学版), 2008, 23(5): 65–69. doi: 10.3969/j.issn.1673-064X.2008.05.017

    LI Xiaogang, YANG Zhaozhong, JIANG Hai, et al. Computer simulation and fractal study of the fingering of the acid in an acid fracturing fracture[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2008, 23(5): 65–69. doi: 10.3969/j.issn.1673-064X.2008.05.017

    [13] 杨兆中, 李小刚, 蒋海, 等. 指进现象模拟研究的回顾与展望[J]. 西南石油大学学报(自然科学版), 2010, 32(1): 85–88. doi: 10.3863/j.issn.1674-5086.2010.01.015

    YANG Zhaozhong, LI Xiaogang, JIANG Hai, et al. Review and prospect of fingering phenomenon simulation[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2010, 32(1): 85–88. doi: 10.3863/j.issn.1674-5086.2010.01.015

    [14] 蒋廷学, 丁云宏, 李治平, 等. 活性水携砂指进压裂的优化设计方法[J]. 石油钻探技术, 2010, 38(3): 87–91. doi: 10.3969/j.issn.1001-0890.2010.03.020

    JIANG Tingxue, DING Yunhong, LI Zhiping, et al. Optimization and applications of active water fingering fracturing technique[J]. Petroleum Drilling Techniques, 2010, 38(3): 87–91. doi: 10.3969/j.issn.1001-0890.2010.03.020

    [15] 徐中良, 戴彩丽, 赵明伟, 等. 酸压用交联酸的研究进展[J]. 应用化工, 2017, 46(12): 2424–2427. doi: 10.3969/j.issn.1671-3206.2017.12.034

    XU Zhongliang, DAI Caili, ZHAO Mingwei, et al. Research and application progress of crosslinked gelled acid[J]. Applied Chemical Industry, 2017, 46(12): 2424–2427. doi: 10.3969/j.issn.1671-3206.2017.12.034

    [16] 贾文峰, 任倩倩, 王旭, 等. 高温携砂酸液体系及其性能评价[J]. 钻井液与完井液,, 2017, 34(4): 96–100.

    JIA Wenfeng, REN Qianqian, WANG Xu, et al. A high temperature sand carrying acid and its performance evaluation[J]. Drilling Fluid & Completion Fluid, 2017, 34(4): 96–100.

  • 期刊类型引用(5)

    1. 陈沁东,赵建国,杨冬冬. 大直径定向钻孔高效成孔钻进技术应用. 煤炭工程. 2021(04): 49-55 . 百度学术
    2. 刘建林,赵建国,李泉新,王传留,王四一,刘飞. 煤矿井下顶板高位大直径定向孔多动力钻扩技术. 煤炭工程. 2021(07): 86-90 . 百度学术
    3. 赵建国,李泉新,刘建林,杨冬冬. 煤矿井下双级双速扩孔技术研究与应用. 煤炭科学技术. 2021(07): 133-138 . 百度学术
    4. 高晓亮,居培,赵建国. 煤层顶板大直径定向钻孔用双级双速PDC钻头设计及应用. 煤田地质与勘探. 2021(05): 272-277+285 . 百度学术
    5. 赵建国. 煤层顶板硬岩大直径定向钻孔施工关键技术. 能源与环保. 2020(10): 139-143+162 . 百度学术

    其他类型引用(5)

图(10)  /  表(1)
计量
  • 文章访问数:  2847
  • HTML全文浏览量:  1197
  • PDF下载量:  111
  • 被引次数: 10
出版历程
  • 收稿日期:  2019-04-07
  • 网络出版日期:  2019-05-13
  • 刊出日期:  2019-04-30

目录

/

返回文章
返回