Key Techniques of Drilling Penetration Rate Improvement in Ultra-Deep Well Chuanshen-1
-
摘要:
川深1井储层埋藏超深,陆相难钻地层研磨性强、可钻性差,大尺寸井眼提速困难,深部地层可钻性差、井身质量控制困难。为此,根据川深1井的地层特征,优化应用了一系列钻井提速技术:采用了气体钻井和泡沫钻井技术,以大幅提高机械钻速;采用了抑制泥岩水化膨胀的泡沫钻井液体系,以解决上部大尺寸井眼地层出水、井眼失稳及高效携岩的难题;采取了旋冲钻井技术、“孕镶金刚石钻头+高速螺杆钻具”复合钻井技术钻进高研磨性地层,以提高钻井时效;采用了预弯曲动力学防斜打快技术,并配套高效PDC钻头和钻井参数优化,钻进深部难钻地层,以提高井身质量。川深1井钻井提速关键技术的应用,确保该井顺利钻至井深8 420 m完钻,创当时亚洲陆上钻井井深最深纪录,平均机械钻速提高至2.11 m/h,钻井周期缩短至475 d,取得了很好的现场应用效果,可为国内类似超深井高效钻井提供借鉴。
Abstract:Reservoirs of Well Chuanshen-1 drilling through can be characterized by large burial depth, strong abrasiveness of the continent strata, poor drillability, slow penetration rate of large diameter boreholes, as well as wellbore quality control. To fully investigate these problems, the following drilling techniques were applied optimally based on the stratigraphic and lithological characteristics of Well Chuanshen-1. The techniques include gas and foam drilling to significantly increase the ROP. Also, it included a newly developed foam system for hydration swelling inhibition of mudstone to effectively solve the problems of water production in the upper large diameter section, and also wellbore instability with insufficient cuttings carrying capacity. In addition, combination of rotary percussion drilling, PDC bit, and high-speed screw techniques greatly improved drilling efficiency in drilling through high-abrasive strata. In addition, the study sought to control the pre-bending dynamic deviation and to optimize drilling parameters using a high-efficiency PDC drill bit. The application results show that drilling techniques of the ultra-deep Well Chuanshen-1 effectively alleviate the drilling difficulties from complex formations. The key technologies for ultra-deep well drilling were formed on the basis of these techniques effectively applied in Well Chuanshen-1, and they solved or alleviated various drilling problems. The average ROP was increased to 2.11 m/h, and the drilling cycle was shortened to 475 days, and achieved favorable field application results. The studies suggest that the effective implementation of this technology can provide technical reference in ultra-deep well drilling in the future.
-
-
表 1 川深1井所在区块岩心试验结果
Table 1 Core test results of the block of Well Chuanshen-1
地层 井深/m 岩性 可钻性级值 抗压强度/
MPa抗拉强度/
MPa牙轮
钻头PDC
钻头侏罗系 2 818.00 长石砂岩 5.13 3.60 135 4.3 三叠系 4 079.00 岩屑砂岩 7.59 6.83 190 9.1 二叠系 6 787.00 硅质灰岩 8.19 7.98 250 9.8 志留—
奥陶系7 230.00 泥质灰岩 5.15 4.22 120 5.4 寒武系 8 422.00 白云岩 7.84 7.89 265 9.5 表 2 川深1井气体钻井参数设计
Table 2 Parameters design of gas drilling in Well Chuanshen–1
井段/m 钻头外径/mm 注气量/(m3·min–1) 注气压力/MPa 钻压/kN 转速/(r·min–1) 910.00~2 100.00 444.5 160~175 1.5~2.0 80~140 60~70 2 100.00~2 318.10 175~210 2.0~3.0 140~180 表 3 预弯曲动力学防斜打快技术钻井技术指标
Table 3 Technical indicators of the pre-bending dynamics deviation control
开次 井眼/mm 钻头型号 钻进地层 钻进井段/m 进尺/m 机械钻速/(m·h–1) 三开 320.7 KM1652ADGR 雷口坡组—嘉陵江组 4 548.86~5 295.50 746.64 4.17 三开 320.7 KS1952DGR 嘉陵江组 5 295.50~5 782.25 486.75 3.79 三开 320.7 KM1652ADGR 嘉陵江组—长兴组 5 782.25~6 248.50 466.25 4.20 四开 241.3 KS1653DGR 栖霞组—洗象池群组 6 885.00~7 359.11 474.11 4.09 -
[1] 郭建春,苟波,王坤杰,等. 川西下二叠统超深气井网络裂缝酸化优化设计[J]. 天然气工业, 2017(6): 34–41. GUO Jianchun, GOU Bo, WANG Kunjie, et al. An optimal design of network-fracture acidification for ultra-deep gas wells in the Lower Permian strata of the Western Sichuan Basin[J]. Natural Gas Industry, 2017(6): 34–41.
[2] HUANG Xianbin, SUN Jinsheng, LYU Kaihe, et al. Application of core-shell structural acrylic resin/nano-SiO2 composite in water based drilling fluid to plug shale pores[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 418–425. doi: 10.1016/j.jngse.2018.05.023
[3] 陈明, 黄志远, 马庆涛, 等. 马深1井钻井工程设计与施工[J]. 石油钻探技术, 2017, 45(4): 15–20. CHEN Ming, HUANG Zhiyuan, MA Qingtao, et al. Design and drilling of Well Mashen 1[J]. Petroleum Drilling Techniques, 2017, 45(4): 15–20.
[4] 张金成, 张东清, 张新军. 元坝地区超深井钻井提速难点与技术对策[J]. 石油钻探技术, 2011, 39(6): 6–10. doi: 10.3969/j.issn.1001-0890.2011.06.002 ZHANG Jincheng, ZHANG Dongqing, ZHANG Xinjun. Difficulties of improving rate of penetration and its technical solutions in Yuanba Area[J]. Petroleum Drilling Techniques, 2011, 39(6): 6–10. doi: 10.3969/j.issn.1001-0890.2011.06.002
[5] 闫光庆, 张金成. 中国石化超深井钻井技术现状与发展建议[J]. 石油钻探技术, 2013, 41(2): 1–6. doi: 10.3969/j.issn.1001-0890.2013.02.001 YAN Guangqing, ZHANG Jincheng. Status and proposal of the Sinopec ultra-deep drilling technology[J]. Petroleum Drilling Techniques, 2013, 41(2): 1–6. doi: 10.3969/j.issn.1001-0890.2013.02.001
[6] 于文平. 我国深井钻井技术发展的难点及对策[J]. 中外能源, 2010, 15(9): 52–55. YU Wenping. Difficulty and countermeasures for the advance of the deep well drilling technology in China[J]. Sino-Global Energy, 2010, 15(9): 52–55.
[7] 杨博仲, 汪瑶, 叶小科. 川西地区复杂超深井钻井技术[J]. 钻采工艺, 2018, 41(4): 27–30. doi: 10.3969/J.ISSN.1006-768X.2018.04.09 YANG Bozhong, WANG Yao, YE Xiaoke. Drilling technology for complex ultradeep wells at west of Sichuan Area[J]. Drilling & Production Technology, 2018, 41(4): 27–30. doi: 10.3969/J.ISSN.1006-768X.2018.04.09
[8] 汪海阁, 葛云华, 石林. 深井超深井钻完井技术现状、挑战和" 十三五”发展方向[J]. 天然气工业, 2017, 37(4): 1–8. WANG Haige, GE Yunhua, SHI Lin. Technologies in deep and ultra-deep well drilling: present status, challenges and future trend in the 13th Five-Year Plan period (2016–2020)[J]. Natural Gas Industry, 2017, 37(4): 1–8.
[9] 王文刚, 王萍, 杨景利. 充气泡沫钻井液在元坝地区陆相地层的应用[J]. 石油钻探技术, 2010, 38(4): 45–48. WANG Wengang, WANG Ping, YANG Jingli. Application of aerated drilling fluid in terrestrial formation in Yuanba Block[J]. Petroleum Drilling Techniques, 2010, 38(4): 45–48.
[10] 赵志国, 白彬珍, 何世明, 等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术, 2017, 45(6): 8–13. ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimization of fast drilling technology for ultra-deep wells in the Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 8–13.
[11] 曹品鲁, 马文英, 张兆国, 等. 可循环空气泡沫钻井技术在元坝10井的应用[J]. 石油钻探技术, 2011, 39(5): 49–52. doi: 10.3969/j.issn.1001-0890.2011.05.011 CAO Pinlu, MA Wenying, ZhANG Zhaoguo, et al. Application of recycling air-foam drilling technology in Well Yuanba-10[J]. Petroleum Drilling Techniques, 2011, 39(5): 49–52. doi: 10.3969/j.issn.1001-0890.2011.05.011
[12] 索忠伟, 王甲昌, 张海平, 等. 旋冲钻井在塔河工区超深井段的应用[J]. 石油钻采工艺, 2013, 35(4): 44–46. doi: 10.3969/j.issn.1000-7393.2013.04.010 SUO Zhongwei, WANG Jiachang, ZHANG Haiping, et al. Application of rotary percussion drilling on the super deep section in Tahe Field[J]. Oil Drilling & Production Technology, 2013, 35(4): 44–46. doi: 10.3969/j.issn.1000-7393.2013.04.010
[13] POWELL S W, HERRINGTON D, BOTTON B, et al. Fluid hammer increases PDC performance through axial and torsional energy at the bit[R]. SPE 166433, 2013.
[14] 祝效华, 刘伟吉. 旋冲钻井技术的破岩及提速机理[J]. 石油学报, 2018, 39(2): 216–222. ZHU Xiaohua, LIU Weiji. Rock breaking and ROP rising mechanism of rotary-percussive drilling technology[J]. Acta Petrolei Sinica, 2018, 39(2): 216–222.
[15] 雷鹏, 倪红坚, 王瑞和, 等. 自激振荡式旋冲工具在深井超深井中的试验应用[J]. 石油钻探技术, 2013, 41(6): 40–43. doi: 10.3969/j.issn.1001-0890.2013.06.008 LEI Peng, NI Hongjian, WANG Ruihe, et al. Field test of self-excited vibration rotary percussion drilling tool in deep and ultra-deep wells[J]. Petroleum Drilling Techniques, 2013, 41(6): 40–43. doi: 10.3969/j.issn.1001-0890.2013.06.008
[16] 狄勤丰, 朱卫平, 姚建林, 等. 预弯曲动力学防斜打快钻具组合动力学模型[J]. 石油学报, 2007, 28(6): 118–121. doi: 10.3321/j.issn:0253-2697.2007.06.024 DI Qinfeng, ZHU Weiping, YAO Jianlin, et al. Dynamic model of bottom hole assembly used in pre-bending dynamic vertical and fast drilling technology[J]. Acta Petrolei Sinica, 2007, 28(6): 118–121. doi: 10.3321/j.issn:0253-2697.2007.06.024
[17] 王成岭, 李作宾, 蒋金宝, 等. 塔河油田12区超深井快速钻井技术[J]. 石油钻探技术, 2010, 38(3): 17–21. doi: 10.3969/j.issn.1001-0890.2010.03.004 WANG Chengling, LI Zuobin, JIANG Jinbao, et al. Fast drilling technology on ultra-deep wells in Block-12, Tahe Oilfield[J]. Petroleum Drilling Techniques, 2010, 38(3): 17–21. doi: 10.3969/j.issn.1001-0890.2010.03.004