Review of Progress on Drilling Fluid Technology in China
-
摘要:
随着深井、超深井以及特殊工艺井越来越多,对钻井液性能的要求也越来越高。为满足安全、快速、高效钻井需要,国内在钻井液开发与应用方面开展了大量研究与应用,并不同程度地满足了钻井工程的需要。尤其是,在抑制性钻井液、油基钻井液、超高温超高密度钻井液等方面取得了快速发展,形成了一系列实用的钻井液技术,逐步缩小了与国外的差距,特别是超高密度钻井液技术已居于国际领先地位。为了更清楚、更全面地了解近年来国内钻井液技术的发展情况,为国内钻井液的开发与应用提出有价值的建议,从抑制性和环保型钻井液、油基钻井液、超高温超高密度钻井液、泡沫钻井液和合成基钻井液等方面,对钻井液的开发、性能和应用情况进行了介绍,在此基础上分析了国内钻井液存在的问题和发展方向,并结合钻井实践,提出了未来需要重点开展的工作。研究结果对国内钻井液的开发与应用具有参考价值和指导意义。
Abstract:Along with the continually increasing deep wells, ultra-deep wells and special process wells, higher standards were imposed on drilling fluids to meet the needs of safe, fast and efficient drilling. To evaluate the progress on the development of high-performance drilling fluids a great deal of research and test applications were carried out over the research and development of drilling fluids that satisfy the particular needs of drilling engineering in China. In particular, rapid development has been achieved in aspects of inhibitive drilling fluids, oil-based drilling fluids, ultra-high temperature and ultra-high density drilling fluids, etc., and a series of practical drilling fluid technologies were formed. They have gradually narrowed the gap with foreign counterparts, especially with respect to the ultra-high density drilling fluid technology of China which plays a leading role in the world. In order to better understand the new development of domestic drilling fluid technologies, and provide valuable suggestions for the development and application of drilling fluids in China, this paper introduces the development, performance and application of drilling fluids. The study focused on the characteristics of inhibitive/environment friendly drilling fluids, oil-based drilling fluid, ultra-high temperature and ultra-high density drilling fluids, foamed drilling fluid and synthetic-based drilling fluid. The study includes a comprehensive review of the problems and development trends of drilling fluid in China, and proposes the tasks that need to be carried out in the future in combination with drilling practices. The research results constitute and excellent reference and best practices for the development and application of domestic drilling fluids.
-
川深1井位于四川省阆中市,是中国石化部署在四川盆地川中隆起北部斜坡带柏垭鼻状构造的一口风险探井,主探震旦系灯影组地层含油气情况,兼探寒武系龙王庙组地层含油气情况,完钻井深8 420.00 m。该井四开采用ϕ241.3 mm钻头钻进,在6 880.00~8 060.00 m井段下入ϕ206.4 mm+ϕ193.7 mm套管,尾管下至井深8 059.50 m,尾管悬挂器位于井深6 527.20 m处。该开次钻遇二叠系、志留系、奥陶系、寒武系地层,累计钻遇14个气层,气层压力系数1.77~1.89,钻井液密度1.97 kg/L,井底静止温度172 ℃。由于地层的储集空间为裂缝和溶洞,井筒内流体与缝洞中气体的置换作用强,液柱压力不能有效压稳气层,钻进过程中油气显示活跃。该井四开井段固井作业属于典型的超深井超高温高压固井,须封住裸眼井段内的多套高压地层,为五开低压地层(压力系数为1.10~1.20)钻进及后期测试提供合格的井筒条件[1]。
高压气井固井作业时,由于水泥浆胶凝失重,环空液柱压力降低,不能压稳气层,气体会窜入水泥环与套管或水泥环与井壁之间的间隙,造成层间互窜甚至窜入井口,导致水泥环密封失效。而且在高温(>110 ℃)环境下,水泥石的强度会衰退,造成水泥石渗透率增大,导致水泥环失去密封能力。为防止气窜,国内外主要采取应用加入胶乳、纳米液硅等防气窜剂的防气窜水泥浆的方法;为防止水泥石强度衰退,主要采用在水泥中添加硅粉的方法。但对于高温高压气井,这些方法均不能有效解决气窜问题。因此,根据川深1井四开固井需求,将高温苯丙胶乳与纳米液硅结合,通过优化设计超高温高密度防气窜水泥浆,并优化固井技术措施,实现了四开超高温高压地层的有效封固,为五开低压地层钻进及后期测试提供了合格的井筒条件。
1. 固井主要技术难点
1.1 气窜风险高、防气窜难度大
1)高压气层防气窜难度大。该井四开累计钻遇14个气层,气层显示活跃。对7 507.00~7 511.00 m、7 661.00~7 666.36 m和7 731.00~7 757.00 m井段钻遇的气层进行了测试,气体上窜速度最大达到458 m/h,最大全烃值99.7%,进出口钻井液密度差0.12 kg/L;裸眼段气层压力最大达到142 MPa,气层压力梯度达到1.89 MPa/100m,潜气窜因子GFR为10.8,属于固井后环空气窜高危井。
2)重叠井段气窜风险高。该井四开固井环空返速设计为1.0 m/s,而重叠段内浆体的环空返速仅为0.49 m/s,顶替效率低,环空会残留钻井液,重叠段的固井质量通常都较差。同时,重叠段为领浆封固,为确保固井施工安全,将领浆稠化时间设计为500 min,顶部强度发展缓慢,气窜风险高。上层套管鞋以下1.50,10.00和70.00 m位置处存在3个气层,重叠段防气窜难度极大。
3)缝洞型地层气液置换效应强。气测显示明显的气层位于茅口组、洗象池群、陡坡寺组、龙王庙组、沧浪铺组、仙女洞组等地层,均为碳酸盐岩地层,裂缝和溶洞较发育,气液置换作用强,依靠液柱压力不能阻止气体进入环空。
1.2 超高温高密度水泥浆性能调整困难
1)超高温条件下高分子水泥添加剂性能会降低。超高温环境下降滤失剂、分散剂、胶乳、缓凝剂等有机高分子水泥添加剂的性能降低,水泥浆的防气窜能力、降滤失性能、高温分散性、稳定性等都得不到有效控制。以降滤失剂为例,国内目前使用的超高温降滤失剂均为AMPS共聚物,当前广泛使用的AMPS降滤失剂高温老化前后(老化条件为在180 ℃条件下养护3 h)的特性黏数测试结果见表1。由表1可知,该类降滤失剂高温老化后的特性黏数损失率均超过25.79%,这说明高分子降滤失剂在高温条件下均会发生高温降解,从而影响水泥浆的性能。
表 1 AMPS降滤失剂高温老化后的特性黏数损失率Table 1. Intrinsic viscosity loss rate of AMPS fluid loss additive after high temperature aging降滤失剂 特性黏数 特性黏数损失率,% 老化前 老化后 BS100 6.276 2.824 73.58 HS-J 5.381 2.978 62.70 SUP102L 2.124 1.776 25.79 2)水泥石需具备长期封固能力。根据API的规定,在温度达到110 ℃时,需在G级油井水泥浆中加入30%~40%的硅粉抑制水泥石强度衰退,但常规加砂水泥浆加入硅粉后并不能满足高温固井需求。室内研究表明:常规加砂水泥石在180 ℃条件下养护14 d后,用扫描电镜可以观察到针状、片状或者粒状产物,胶结物不致密(见图1);高温养护后其强度急剧衰退,降至5 MPa左右;孔隙度和渗透率增大,渗透率可增至10 mD,导致水泥环失去密封能力。同时,常规高温高密度水泥石的弹性模量达到12 GPa以上,表现为硬脆性,难以满足五开钻进及后期射孔、测试等作业对水泥环密封完整性的需求,因此,该井四开固井,要求水泥石具备一定的弹韧性[2]。
1.3 顶替效率难以保证
该井四开所用钻井液的密度为1.97 kg/L,黏度为56 s,动切力为10 Pa,且钻井液中混有3%的原油,固相含量高达34%,难以将井壁上的油膜冲洗干净;钻井液与隔离液的密度差仅为0.05 kg/L,井深7 300.00 m以深井径扩大率仅有1.05%,ϕ206.4 mm小接箍套管无法安装扶正器,套管居中度低,提高顶替效率难度大[3]。
2. 超高温水泥浆优化设计
2.1 设计思路
通过研究不同温度下水泥石强度的发展规律,优化硅粉粒径和加量来抑制水泥石强度在高温下的衰退。针对单一防气窜剂不能有效解决高压气窜的问题,将胶乳和液硅进行复配使用,利用胶乳成膜和液硅堵塞的防气窜特性,增强水泥浆防气窜能力,提高水泥石的弹性,降低其渗透率。
2.2 优化加砂参数控制强度衰退
当井底温度高于150 ℃时,常规加砂水泥石的强度快速衰退,孔隙结构变大,水化产物为以板块状C2SH与CH为主的混合物[3]。解决常规加砂水泥石强度高温快速衰退的主要方法是将硅粉加量增大到50%~60%,并优选粗硅粉和细硅粉的配比,进一步降低水泥石的钙硅(Ca/Si)比,消耗CH与高温下生成的C2SH。选取80目(粗)与200目(细)2种硅粉,将加入不同量硅粉(粗硅粉和细硅粉配比)常规加砂水泥浆形成的水泥石在180 ℃下进行养护,测其在不同养护时间下的抗压强度,结果见图2。由图2可知:加入50%粗硅粉和60%粗硅粉形成的水泥石,在养护到3 d时抗压强度达到最大,随后抗压强度出现衰退,在养护到14 d时抗压强度分别为22.2和26.7 MPa,衰退幅度分别为38.0%和32.4%;80目与200目硅粉复配可以显著抑制水泥石强度的衰退,30%粗硅粉与30%细硅粉复配,养护14 d时抗压强度为34.2 MPa,衰退幅度为4.5%。因此,选用30%粗硅粉与30%细硅粉复配。粗细硅粉复配增大了二氧化硅的比表面积,在二氧化硅加量相同的条件下可以消耗更多的C2SH与CH,其水化产物结构致密(见图3)。
2.3 复合纳米添加剂增强水泥浆的防气窜能力
1)添加胶乳改善水泥浆性能。a. 胶乳能提高水泥浆的防气窜能力。选用玻璃化温度90 ℃的苯丙胶乳提高水泥浆的高温防气窜能力,胶乳粒径为300~400 nm,其具有“成膜”防气窜和“堵塞”防气窜的作用。正压差作用下胶乳颗粒在水泥颗粒间聚集成膜,膜覆盖在滤饼表面可以阻止气窜的发生。同时,胶乳也具有颗粒堵塞作用,可降低水泥石的渗透率。b. 胶乳能改善水泥石的力学性能。胶乳颗粒具有弹性,胶乳水泥浆固化后可以显著降低水泥石的弹性模量。c. 胶乳能进一步降低水泥浆的滤失量、提高水泥浆的高温沉降稳定性[4–8]。
2)纳米液硅改善水泥浆的性能[9]。纳米液硅中含有45%活性纳米二氧化硅微球,粒径10~300 nm,中值粒径160 nm。a. 提高水泥浆的防气窜能力。纳米二氧化硅“硬球体”和胶乳“软球体”填充在水泥颗粒孔隙里,交织在一起,可以增强其堵塞能力,提高水泥浆的高温防气窜能力。b. 提高水泥石高温强度的稳定性。纳米液硅中二氧化硅的比表面积达到了25 m2/g,可以显著提高水泥石高温强度的稳定性。
2.4 超高温高密度水泥浆配方与性能评价
2.4.1 超高温高密度水泥浆配方
依据超高温高密度水泥浆设计方法及性能需求,优选抗高温的降滤失剂(高温黏度损失率小于10%)和缓凝剂(抗温200 ℃,耐温差60 ℃)等,通过优化形成了超高温高密度水泥浆配方:水泥+30.0%硅粉(80目)+30.0%硅粉(200目)+30.0%铁矿粉+2.5%降滤失剂(SCF200L)+10.0%苯丙胶乳(SCJR)+10.0%纳米液硅(SCLS)+x%缓凝剂(SCR–3)+1.0%抑泡剂(SCXP)+48.0%水。其基本性能为:密度2.05 kg/L;稠化时间可调,缓凝剂加量为7.5%和5.0%时,在155 ℃、155 MPa条件下的稠化时间分别为571 和293 min,稠化过渡时间1 min,均为直角稠化;滤失量38 mL;流动度21 cm;流性指数0.75,稠度系数1.28 mPa·sn;自由液0 mL;无沉降;72 h顶部强度15.3 MPa;水泥石在180 ℃条件下养护14 d时的强度可达41 MPa,未见强度衰退。
2.4.2 性能评价
1)防气窜性能。根据稠化时间、稠化过渡时间和API滤失量计算出超高温高密度水泥浆的防气窜系数SPN值为0.20~0.43。使用7150型防气窜模拟分析仪评价了超高温高密度水泥浆的防气窜能力,结果见图4。由图4可知,当水泥浆处于“失重”(胶凝)状态时,未见气窜现象发生。超高温高密度水泥浆形成的水泥石在180 ℃下养护7 d时的气测渗透率为0.008 1 mD,仅为常规水泥石的3%,说明苯丙胶乳和纳米液硅结合防气窜作用显著。
2)水泥石力学性能评价[10–11]。超高温高密度水泥浆形成的水泥石在180 ℃、21 MPa条件下养护7 d,单轴弹性模量为7.54 GPa,较常规水泥石降低了30%。这是由于超高温高密度水泥浆中的胶乳为有机颗粒,其在高温下具有较好的弹韧性;纳米液硅中的纳米二氧化硅颗粒填充在水泥颗粒间,通过参与水化反应,生成CSH凝胶来修补水泥石中的微观缺陷(微裂缝等),改善了水泥石的力学性能,提高了水泥石的弹性形变能力,有利于在井下温度、压力条件下及压裂施工时,保持水泥环的完整性,提高环空密封能力。
3. 现场施工
3.1 固井技术措施
针对该井四开固井防窜难度大、顶替效率低的技术难点,采用了“替净”、“压稳”和“封严”等技术措施来提高固井质量。
1)“替净”技术措施包括:a. 使用性能良好的低黏低切先导浆,占裸眼段长度2 000.00 m;b. 优化浆柱流变性能,控制隔离液屈服值大于钻井液的屈服值、小于水泥浆的屈服值;c. 设计隔离液占裸眼段长度1 500.00 m,冲洗时间25 min;d. 使用洗油型隔离液,隔离液润湿点30%,提高界面水润湿性,增强界面胶结能力。
2)“压稳”技术措施包括:a. 使用分段压稳设计模型,以确保压稳气层,压稳系数设计为1.05;b. 为确保施工过程中全程压稳,采用加重冲洗液,其密度为2.0 kg/L;c. 环空加压5 MPa候凝。3)“封严”技术措施是使用带顶部封隔器的尾管悬挂器,在水泥浆顶替到位后,坐封顶部封隔器,切断气体上窜的通道。
3.2 固井施工
注入30 m3密度1.97 kg/L的低黏低切先导浆;注入20 m3密度2.02 kg/L的加重隔离液;注入密度2.03 kg/L的领浆和尾浆,注入量分别为22和18 m3;下钻杆胶塞,替入1 m3密度2.02 kg/L的压塞液,排量0.50 m3/min;替入26 m3密度1.97 kg/L的井浆,排量1.53 m3/min;替入14 m3密度2.02 kg/L的保护液,排量0.88 m3/min;替入57 m3密度1.97 kg/L的井浆,排量1.50 m3/min;用泵车替入2.8 m3密度1.00 kg/L的清水,排量0.70 m3/min;泄压,放回水断流;下压500 kN,坐封顶部封隔器;憋压5 MPa,验封正常;起钻15柱,正循环洗井一周;关井憋压5 MPa候凝。
3.3 固井质量
候凝72 h后,通井后检测井深7 273.00 m以深固井质量,第一界面优良率94.8%,第二界面优良率为96.4%,整体固井质量达到良好。在五开钻进过程中,未发生气窜等异常现象,满足了超深井超高温高压地层的长效封固需求。
4. 结 论
1)根据胶乳水泥浆防气窜、加入硅粉控制水泥石强度衰退的思路,通过优化形成了适用于超高温高压地层固井的高密度防气窜水泥浆。该水泥浆加入30%的80目硅粉和30%的200目硅粉控制水泥石强度高温衰退,再加入10%纳米液硅改善水泥石高温强度的稳定性,形成的水泥石在180 ℃下养护14 d强度达到了41 MPa,未见强度衰退现象。
2)超高温高压高密度防气窜水泥浆利用高温苯丙胶乳“软球体”和纳米液硅“硬球体”提高水泥浆高温高压下的防气窜能力,防气窜模拟试验未见气窜现象,形成水泥石的气测渗透率仅为0.008 1 mD,单轴弹性模量为7.54 GPa。
3)川深1井四开采用超高温高压高密度防气窜水泥浆,采取“替净”、“压稳”和“封严”等技术措施,实现了对四开井眼内多个气层的有效封隔,为后期钻井、测试等作业提供了安全的井筒条件。
-
[1] 吕开河, 邱正松, 徐加放. 强抑制性多元醇海水钻井液研究及应用[J]. 中国石油大学学报(自然科学版), 2006, 30(3): 59–62, 66. doi: 10.3321/j.issn:1000-5870.2006.03.013 LYU Kaihe, QIU Zhengsong, XU Jiafang. Study and application of polyglycol seawater drilling fluids with strong inhibitory[J]. Journal of China University of Petroleum (Edition of Natural Science), 2006, 30(3): 59–62, 66. doi: 10.3321/j.issn:1000-5870.2006.03.013
[2] 李公让, 薛玉志, 乔军, 等. 胜利油区聚合醇钻井液技术的应用[J]. 油气地质与采收率, 2002, 9(1): 71–73. doi: 10.3969/j.issn.1009-9603.2002.01.023 LI Gongrang, XUE Yuzhi, QIAO Jun, et al. Application of polyol drilling fluid technology in Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2002, 9(1): 71–73. doi: 10.3969/j.issn.1009-9603.2002.01.023
[3] 迟建功. 高性能聚合醇钻井液体系在水平钻井中应用研究[J]. 西部探矿工程, 2018, 30(6): 64–66. doi: 10.3969/j.issn.1004-5716.2018.06.024 CHI Jiangong. Study on the application of high performance polyol drilling fluid system in horizontal drilling[J]. West-China Exploration Engineering, 2018, 30(6): 64–66. doi: 10.3969/j.issn.1004-5716.2018.06.024
[4] 黄浩清. 安全环保的新型水基钻井液ULTRADRILL[J]. 钻井液与完井液, 2004, 21(6): 4–7. doi: 10.3969/j.issn.1001-5620.2004.06.002 HUANG Haoqing. An environmentally safe water-base drilling fluid ULTRADRILL[J]. Drilling Fluid & Completion Fluid, 2004, 21(6): 4–7. doi: 10.3969/j.issn.1001-5620.2004.06.002
[5] 屈沅治, 戎克生, 黄宏军, 等. 胺基钻井液在新疆油田莫116 井区的应用[J]. 钻井液与完井液, 2011, 28(6): 24–26. doi: 10.3969/j.issn.1001-5620.2011.06.008 QU Yuanzhi, RONG Kesheng, HUANG Hongjun, et al. Application of amine-based drilling fluid system in Area Mo-116 of Xinjiang Oilfield[J]. Drilling Fluid & Completion Fluid, 2011, 28(6): 24–26. doi: 10.3969/j.issn.1001-5620.2011.06.008
[6] 钟汉毅, 邱正松, 黄维安, 等. 聚胺高性能水基钻井液特性评价及应用[J]. 科学技术与工程, 2013, 13(10): 2803–2807. doi: 10.3969/j.issn.1671-1815.2013.10.036 ZHONG Hanyi, QIU Zhengsong, HUANG Weian, et al. Properties evaluation and application of polyamine high performance water-based drilling fluid[J]. Science Technology and Engineering, 2013, 13(10): 2803–2807. doi: 10.3969/j.issn.1671-1815.2013.10.036
[7] 马超, 赵林, 宋元森. 聚铝胺盐防塌钻井液研究与应用[J]. 石油钻探技术, 2014, 42(1): 55–60. doi: 10.3969/j.issn.1001-0890.2014.01.011 MA Chao, ZHAO Lin, SONG Yuansen. Research and application of anti-sloughing drilling fluid of poly aluminum-amine salt[J]. Petroleum Drilling Techniques, 2014, 42(1): 55–60. doi: 10.3969/j.issn.1001-0890.2014.01.011
[8] 张捷, 许根. 聚胺钾盐钻井液在哥伦比亚南部区块的应用[J]. 钻井液与完井液, 2014, 31(4): 86–88. doi: 10.3969/j.issn.1001-5620.2014.04.025 ZHANG Jie, XU Gen. Application of polyamine potassium salt drilling fluids in Southern Colombia Block[J]. Drilling Fluid & Completion Fluid, 2014, 31(4): 86–88. doi: 10.3969/j.issn.1001-5620.2014.04.025
[9] 赵虎, 司西强, 雷祖猛, 等. 阳离子烷基糖苷钻井液在长南水平井的应用[J]. 精细石油化工进展, 2015, 16(1): 6–9, 23. doi: 10.3969/j.issn.1009-8348.2015.01.002 ZHAO Hu, SI Xiqiang, LEI Zumeng, et al. Application of cationic alkyl glucoside drilling fluid in Changnan horizontal wells[J]. Advances in Fine Petrochemicals, 2015, 16(1): 6–9, 23. doi: 10.3969/j.issn.1009-8348.2015.01.002
[10] 赵虎, 龙大清, 司西强, 等. 烷基糖苷衍生物钻井液研究及其在页岩气井的应用[J]. 钻井液与完井液, 2016, 33(6): 23–27. doi: 10.3969/j.issn.1001-5620.2016.06.004 ZHAO Hu, LONG Daqing, SI Xiqiang, et al. Study on alkyl Polyglucoside derivative drilling fluid and its use in shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2016, 33(6): 23–27. doi: 10.3969/j.issn.1001-5620.2016.06.004
[11] 耿晓光. 甲酸盐钻井液体系在大庆开发井的推广应用[J]. 钻井液与完井液, 2007, 24(2): 77–78, 82. doi: 10.3969/j.issn.1001-5620.2007.02.026 GENG Xiaoguang. Application of formate drilling fluids in development wells in Daqing Oilfield[J]. Drilling Fluid & Completion Fluid, 2007, 24(2): 77–78, 82. doi: 10.3969/j.issn.1001-5620.2007.02.026
[12] 姚少全, 汪世国, 谢远灿, 等. 有机盐钻井液的研究与应用[J]. 石油钻探技术, 2001, 29(5): 43–45. doi: 10.3969/j.issn.1001-0890.2001.05.014 YAO Shaoquan, WANG Shiguo, XIE Yuancan, et al. Research and application of organic salt drilling fluid[J]. Petroleum Drilling Techniques, 2001, 29(5): 43–45. doi: 10.3969/j.issn.1001-0890.2001.05.014
[13] 刘志良, 戎克生. 有机盐钻井液在T4031井三开井段的应用[J]. 新疆石油天然气, 2009, 5(1): 38–40. doi: 10.3969/j.issn.1673-2677.2009.01.009 LIU Zhiliang, RONG Kesheng. Application of organic salt drilling fluid in the third opening section of Well T4031[J]. Xinjiang Oil & Gas, 2009, 5(1): 38–40. doi: 10.3969/j.issn.1673-2677.2009.01.009
[14] 周建东, 李在均, 邹盛礼, 等. 有机盐钻井液在塔里木东河油田DH1-8-6井的应用[J]. 钻井液与完井液, 2002, 19(4): 21–23. doi: 10.3969/j.issn.1001-5620.2002.04.007 ZHOU Jiandong, LI Zaijun, ZOU Chengli, et al. Application of organic salt drilling fluid in Well DH1-8-6 of Donghe Oilfield in Tarim[J]. Drilling Fluid & Completion Fluid, 2002, 19(4): 21–23. doi: 10.3969/j.issn.1001-5620.2002.04.007
[15] 程玉生, 杨洪烈, 张明, 等. 无固相有机盐钻井液在南海西部HK29-1-2井的应用[J]. 钻井液与完井液, 2011, 28(6): 27–29. doi: 10.3969/j.issn.1001-5620.2011.06.009 CHENG Yusheng, YANG Honglie, ZHANG Ming, et al. Application of solid-free organic salt drilling fluid in Well HK29-1-2 in Western South China Sea[J]. Drilling Fluid & Completion Fluid, 2011, 28(6): 27–29. doi: 10.3969/j.issn.1001-5620.2011.06.009
[16] 肖怡, 陈林, 张绍俊. 封堵性低密度全油基钻井液在低压储层保护中的应用[J]. 钻采工艺, 2015, 38(5): 89–91. doi: 10.3969/J.ISSN.1006-768X.2015.05.27 XIAO Yi, CHEN Lin, ZHANG Shaojun. Application of plugging low density oil-based drilling fluid in low pressure reservoir protection[J]. Drilling & Production Technology, 2015, 38(5): 89–91. doi: 10.3969/J.ISSN.1006-768X.2015.05.27
[17] 李建成, 钱志伟, 杜兴国, 等. 辽河油田油页岩地层全油基钻井液技术[J]. 钻井液与完井液, 2015, 32(4): 9–12. doi: 10.3969/j.issn.1001-5620.2015.04.003 LI Jiancheng, QIAN Zhiwei, DU Xingguo, et al. Full oil-based drilling fluid technology for oil shale formation in Liaohe Oilfield[J]. Drilling Fluid & Completion Fluid, 2015, 32(4): 9–12. doi: 10.3969/j.issn.1001-5620.2015.04.003
[18] 李建成, 关键, 王晓军, 等. 苏53区块全油基钻井液的研究与应用[J]. 石油钻探技术, 2014, 42(5): 62–67. LI Jiancheng, GUAN Jian, WANG Xiaojun, et al. Research and application of oil-based drilling fluid technology in Block Su 53[J]. Petroleum Drilling Techniques, 2014, 42(5): 62–67.
[19] 王显光, 李雄, 林永学. 页岩水平井用高性能油基钻井液研究与应用[J]. 石油钻探技术, 2013, 41(2): 17–22. doi: 10.3969/j.issn.1001-0890.2013.02.004 WANG Xianguang, LI Xiong, LIN Yongxue. Research and application of high performance oil base drilling fluid for shale horizontal wells[J]. Petroleum Drilling Techniques, 2013, 41(2): 17–22. doi: 10.3969/j.issn.1001-0890.2013.02.004
[20] 何恕, 李胜, 王显光, 等. 高性能油基钻井液的研制及在彭页3HF井的应用[J]. 钻井液与完井液, 2013, 30(5): 1–4. doi: 10.3969/j.issn.1001-5620.2013.05.001 HE Shu, LI Sheng, WANG Xianguang, et al. Development of high performance oil-based drilling fluid and its application in Pengye 3HF Well[J]. Drilling Fluid & Completion Fluid, 2013, 30(5): 1–4. doi: 10.3969/j.issn.1001-5620.2013.05.001
[21] 何涛, 李茂森, 杨兰平, 等. 油基钻井液在威远地区页岩气水平井中的应用[J]. 钻井液与完井液, 2012, 29(3): 1–5. doi: 10.3969/j.issn.1001-5620.2012.03.001 HE Tao, LI Maosen, YANG Lanping, et al. Application of oil-based drilling fluids in shale gas horizontal wells in Weiyuan Area[J]. Drilling Fluid & Completion Fluid, 2012, 29(3): 1–5. doi: 10.3969/j.issn.1001-5620.2012.03.001
[22] 于兴东, 姚新珠, 林士楠, 等. 抗220℃高温油包水钻井液研究与应用[J]. 石油钻探技术, 2001, 29(5): 45–47. doi: 10.3969/j.issn.1001-0890.2001.05.015 YU Xingdong, YAO Xinzhu, LIN Shinan, et al. The study and application of water in oil drilling fluids resisting 220℃ high temperature[J]. Petroleum Drilling Techniques, 2001, 29(5): 45–47. doi: 10.3969/j.issn.1001-0890.2001.05.015
[23] 何振奎. 泌页 HF1井油基钻井液技术[J]. 石油钻探技术, 2012, 40(4): 32–37. doi: 10.3969/j.issn.1001-0890.2012.04.007 HE Zhenkui. Oil base drilling fluid technology applied in Well Biye HF 1[J]. Petroleum Drilling Techniques, 2012, 40(4): 32–37. doi: 10.3969/j.issn.1001-0890.2012.04.007
[24] 李振智, 孙举, 李晓岚, 等. 新型无土相油基钻井液研究与现场试验[J]. 石油钻探技术, 2017, 45(1): 33–38. LI Zhenzhi, SUN Ju, LI Xiaolan, et al. The development and application of a clay-free oil-based drilling fluid[J]. Petroleum Drilling Techniques, 2017, 45(1): 33–38.
[25] 凡帆, 王京光, 蔺文洁. 长宁区块页岩气水平井无土相油基钻井液技术[J]. 石油钻探技术, 2016, 44(5): 34–39. FAN Fan, WANG Jingguang, LIN Wenjie. Clay-free oil based drilling fluid technology for shale gas horizontal wells in the Changning Block[J]. Petroleum Drilling Techniques, 2016, 44(5): 34–39.
[26] 王中华, 王旭, 杨小华. 超高温钻井液体系研究(Ⅳ):盐水钻井液设计与评价[J]. 石油钻探技术, 2009, 37(6): 1–5. doi: 10.3969/j.issn.1001-0890.2009.06.001 WANG Zhonghua, WANG Xu, YANG Xiaohua. Study on ultra-high temperature drilling fluid system(IV): design and evaluation of saltwater drilling fluid[J]. Petroleum Drilling Techniques, 2009, 37(6): 1–5. doi: 10.3969/j.issn.1001-0890.2009.06.001
[27] 陶士先, 张丽君, 单文军. 耐高温(230 ℃)饱和盐水钻井液技术研究[J]. 探矿工程(岩土钻掘工程), 2014, 41(1): 21–26. TAO Shixian, ZHANG Lijun, SHAN Wenjun. Research on ultra high temperature (230 ℃) saturated brine drilling fluid technology[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2014, 41(1): 21–26.
[28] 张丽君, 王旭, 胡小燕, 等. 抗温270 ℃钻井液聚合物降滤失剂的研制[J]. 石油化工, 2017, 46(1): 117–123. doi: 10.3969/j.issn.1000-8144.2017.01.017 ZHANG Lijun, WANG Xu, HU Xiaoyan, et al. Development of the polymer filtrate reducer used for 270 ℃ ultra-high temperature drilling fluid[J]. Petrochemical Technology, 2017, 46(1): 117–123. doi: 10.3969/j.issn.1000-8144.2017.01.017
[29] 杨小华, 钱晓琳, 王琳, 等. 抗高温聚合物降滤失剂PFL-L的研制与应用[J]. 石油钻探技术, 2012, 40(6): 8–12. doi: 10.3969/j.issn.1001-0890.2012.06.002 YANG Xiaohua, QIAN Xiaolin, WANG Lin, et al. Development and application of an high temperature resistant polymer PFL-L as fluid loss additive[J]. Petroleum Drilling Techniques, 2012, 40(6): 8–12. doi: 10.3969/j.issn.1001-0890.2012.06.002
[30] 李建军, 王中义. 抗高温无固相钻井液技术[J]. 钻井液与完井液, 2017, 34(3): 11–15. doi: 10.3969/j.issn.1001-5620.2017.03.002 LI Jianjun, WANG Zhongyi. High temperature solid-free drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2017, 34(3): 11–15. doi: 10.3969/j.issn.1001-5620.2017.03.002
[31] 邱正松, 黄维安, 何振奎, 等. 超高温水基钻井液技术在超深井泌深1井的应用[J]. 钻井液与完井液, 2009, 26(2): 35–36. doi: 10.3969/j.issn.1001-5620.2009.02.010 QIU Zhengsong, HUANG Weian, HE Zhenkui, et al. The application of high temperature drilling fluid technology in Well Bishen-1[J]. Drilling Fluid & Completion Fluid, 2009, 26(2): 35–36. doi: 10.3969/j.issn.1001-5620.2009.02.010
[32] 李公让, 薛玉志, 刘宝峰, 等. 胜科1井四开超高温高密度钻井液技术[J]. 钻井液与完井液, 2009, 26(2): 12–15. doi: 10.3969/j.issn.1001-5620.2009.02.003 LI Gongrang, XUE Yuzhi, LIU Baofeng, et al. High temperature high density drilling fluid technology for the forth interval of Well Shengke-1[J]. Drilling Fluid & Completion Fluid, 2009, 26(2): 12–15. doi: 10.3969/j.issn.1001-5620.2009.02.003
[33] 刘伟莉, 马庆涛, 付怀刚. 干热岩地热开发钻井技术难点与对策[J]. 石油机械, 2015, 43(8): 11–15. LIU Weili, MA Qingtao, FU Huaigang. Drilling difficulties and solutions for hot dry rock geothermal development[J]. China Petroleum Machinery, 2015, 43(8): 11–15.
[34] 颜磊, 蒋卓, 王大勇, 等. 干热岩抗高温钻井液体系研究[J]. 化学与生物工程, 2015, 32(7): 55–58. doi: 10.3969/j.issn.1672-5425.2015.07.015 YAN Lei, JIANG Zhuo, WANG Dayong, et al. Study on hot dry rock high temperature resistant drilling fluid system[J]. Chemistry & Bioengineering, 2015, 32(7): 55–58. doi: 10.3969/j.issn.1672-5425.2015.07.015
[35] 林永学, 杨小华, 蔡利山, 等. 超高密度钻井液技术[J]. 石油钻探技术, 2011, 39(6): 1–5. doi: 10.3969/j.issn.1001-0890.2011.06.001 LIN Yongxue, YANG Xiaohua, CAI Lishan, et al. Ultra-high density drilling fluid technology[J]. Petroleum Drilling Techniques, 2011, 39(6): 1–5. doi: 10.3969/j.issn.1001-0890.2011.06.001
[36] 刘伟, 李华坤, 徐先觉. 土库曼斯坦阿姆河右岸气田复杂深井超高密度钻井液技术[J]. 石油钻探技术, 2016, 44(3): 33–38. LIU Wei, LI Huakun, XU Xianjiao. The application of ultra high density drilling fluids in complex deep wells in the Amu Darya Right Bank Gas Field, Turkmenistan[J]. Petroleum Drilling Techniques, 2016, 44(3): 33–38.
[37] 邓明杰, 朱化蜀, 廖忠会. 泡沫钻井在河坝地区的应用[J]. 天然气技术, 2010, 4(2): 27–29. DENG Mingjie, ZHU Huashu, LIAO Zhonghui. Application of foam drilling to Heba Area[J]. Natural Gas Technology and Economy, 2010, 4(2): 27–29.
[38] 李丽红, 杨万成, 李玉泉. 欠平衡泡沫钻井液技术在窿14井的应用[J]. 钻井液与完井液, 2006, 23(3): 8–11. doi: 10.3969/j.issn.1001-5620.2006.03.003 LI Lihong, YANG Wancheng, LI Yuquan. Application of underbalanced foam drilling fluid in Long-14 Well[J]. Drilling Fluid & Completion Fluid, 2006, 23(3): 8–11. doi: 10.3969/j.issn.1001-5620.2006.03.003
[39] 王广财, 熊开俊, 曾翔宇, 等. 可循环油基泡沫钻井液在胜北油田的应用[J]. 钻井液与完井液, 2014, 31(6): 17–20. doi: 10.3969/j.issn.1001-5620.2014.06.005 WANG Guangcai, XIONG Kaijun, ZENG Xiangyu, et al. Application of circulating oil based foam drilling fluid in Shengbei Oilfield[J]. Drilling Fluid & Completion Fluid, 2014, 31(6): 17–20. doi: 10.3969/j.issn.1001-5620.2014.06.005
[40] 刘登峰, 郭建春, 张荣志, 等. 可循环微泡沫钻井液在吐哈油田马703井的应用[J]. 石油钻采工艺, 2005, 27(6): 34–36. doi: 10.3969/j.issn.1000-7393.2005.06.011 LIU Dengfeng, GUO Jianchun, ZHANG Rongzhi, et al. Application of pumpable micro: foamed drilling fluid in Ma 703 Well of Tuha Oilfield[J]. Oil Drilling & Production Technology, 2005, 27(6): 34–36. doi: 10.3969/j.issn.1000-7393.2005.06.011
[41] 郑述培, 李文明. 可循环微泡沫钻井液在郑7-平2井的应用[J]. 钻采工艺, 2012, 35(4): 107–108. doi: 10.3969/J.ISSN.1006-768X.2012.04.35 ZHENG Shupei, LI Wenming. Application of recyclable micro foam drilling fluid in Well 7-Ping 2[J]. Drilling & Production Technology, 2012, 35(4): 107–108. doi: 10.3969/J.ISSN.1006-768X.2012.04.35
[42] 王占林, 冯水山, 王昱涵, 等. 可循环微泡沫钻井液技术在易漏失地层钻井施工中的应用[J]. 西部探矿工程, 2014, 26(11): 69–72. doi: 10.3969/j.issn.1004-5716.2014.11.023 WANG Zhanlin, FENG Shuishan, WANG Yuhan, et al. Application of recyclable micro foam drilling technology in the construction of leaky formations[J]. West-China Exploration Engineering, 2014, 26(11): 69–72. doi: 10.3969/j.issn.1004-5716.2014.11.023
[43] 罗淮东, 石李保, 左京杰, 等. 可循环微泡钻井液研究及其在乍得潜山地层的应用[J]. 钻井液与完井液, 2017, 34(5): 8–13. doi: 10.3969/j.issn.1001-5620.2017.05.002 LUO Huaidong, SHI Libao, ZUO Jingjie, et al. Recyclable micro foam drilling fluid: its study and application in burial hill structure in Chad[J]. Drilling Fluid & Completion Fluid, 2017, 34(5): 8–13. doi: 10.3969/j.issn.1001-5620.2017.05.002
[44] 彭放. YC21–1–4井钻井液技术[J]. 钻井液与完井液, 2000, 17(3): 44–46. doi: 10.3969/j.issn.1001-5620.2000.03.012 PENG Fang. YC21-1-4 Well drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2000, 17(3): 44–46. doi: 10.3969/j.issn.1001-5620.2000.03.012
[45] 耿铁, 张岩, 吴彬, 等. 新型合成基钻井液体系的研制与应用[J]. 石油天然气学报, 2009, 31(2): 299–300, 321. GENG Tie, ZHANG Yan, WU Bin, et al. Development and application of new synthetic base drilling fluid system[J]. Journal of Oil and Gas Technology, 2009, 31(2): 299–300, 321.
[46] 万绪新, 张海青, 沈丽, 等. 合成基钻井液技术研究与应用[J]. 钻井液与完井液, 2014, 31(4): 26–29. doi: 10.3969/j.issn.1001-5620.2014.04.008 WAN Xuxin, ZHANG Haiqing, SHEN Li, et al. Research and application of synthetic-based drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2014, 31(4): 26–29. doi: 10.3969/j.issn.1001-5620.2014.04.008
[47] 孙明波, 乔军, 刘宝峰, 等. 生物柴油钻井液研究与应用[J]. 钻井液与完井液, 2013, 30(4): 15–18. doi: 10.3969/j.issn.1001-5620.2013.04.005 SUN Mingbo, QIAO Jun, LIU Baofeng, et al. Research and application of biodiesel drilling fluid[J]. Drilling Fluid & Completion Fluid, 2013, 30(4): 15–18. doi: 10.3969/j.issn.1001-5620.2013.04.005
-
期刊类型引用(2)
1. 蒋海军,耿黎东,王晓慧,光新军. 国外石油工程碳减排技术与作业管理发展现状及启示. 石油钻探技术. 2022(05): 125-134 . 本站查看
2. 杨建朋. 深层特低渗油藏气驱油藏工程设计. 化工管理. 2021(14): 189-190 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 5109
- HTML全文浏览量: 1123
- PDF下载量: 230
- 被引次数: 5