The Interaction between Gas Hydrate Kinetics Inhibitors and Water Molecules
-
摘要:
为了解天然气水合物动力学抑制剂的分子结构对其抑制性能的影响,分析了不同结构动力学抑制剂与水分子之间的相互作用规律。采用分子模拟方法,分别研究了含有环状结构的动力学抑制剂PVP和PVCap,含有链状结构的动力学抑制剂PMC,以及同时含有环状结构和链状结构的新型动力学抑制剂YZ与水分子之间的相互作用。研究发现,动力学抑制剂与水分子间的相互作用与动力学抑制剂结构密切相关:具有环状结构的动力学抑制剂可以有效降低溶液中水分子的扩散系数,具有链状结构的动力学抑制剂可以与水分子形成更多的氢键,同时具有环状结构与链状结构的动力学抑制剂其抑制性更强。研究结果进一步明确了动力学抑制剂分子结构对其抑制性能影响的机理,对研制天然气水合物动力学抑制剂具有指导意义。
Abstract:In order to understand the influence of the molecular structure of gas hydrate kinetics inhibitors on its inhibitory performance, the interactions between kinetics inhibitors with different structures and water molecules were analyzed. By utilizing a molecular simulation method, the interactions between water molecules with the cyclic structure-bearing kinetic inhibitors (PVP and PVCap), the chain structure-bearing kinetic inhibitor (PMC), and the novel kinetic inhibitor containing both cyclic structure and chain structure (YZ) were studied. The study found that the interactions between kinetics inhibitors and water molecules were closely related to the structures of kinetic inhibitors. First, the cyclic structure-bearing kinetic inhibitors could effectively reduce the diffusion coefficient of water molecules in the solution. Second, the chain structure-bearing kinetic inhibitor could form more hydrogen bonds with water molecules, and the kinetic inhibitor containing both cyclic structure and chain structure presented stronger inhibition. The study results further clarified the influencing mechanism of kinetic inhibitor molecular structure on its inhibition performance, which demonstrated itself to be effective for guiding the development of gas hydrate kinetic inhibitors.
-
Keywords:
- gas hydrate /
- kinetic inhibitor /
- molecular simulation /
- water molecules /
- hydrogen bond /
- diffusion coefficient
-
-
-
[1] 王屹, 李小森. 天然气水合物开采技术研究进展[J]. 新能源进展, 2013, 1(1): 69–79. doi: 10.3969/j.issn.2095-560X.2013.01.007 WANG Yi, LI Xiaosen. Research progress of natural gas hydrate production technology[J]. Advances in New and Renewable Energy, 2013, 1(1): 69–79. doi: 10.3969/j.issn.2095-560X.2013.01.007
[2] 韦红术,杜庆杰,曹波波,等. 深水油气井关井期间井筒含天然气水合物相变的气泡上升规律研究[J]. 石油钻探技术, 2019, 47(2): 42–49. WEI Hongshu, DU Qingjie, CAO Bobo, et al. The ascending law of gas bubbles in a wellbore considering the phase change of natural gas hydrates during deepwater well shut-in[J]. Petroleum Drilling Techniques, 2019, 47(2): 42–49.
[3] 任冠龙,孟文波,张崇,等. 深水气井测试中天然气水合物的抑制和调控方法[J]. 断块油气田, 2018, 25(1): 107–110. REN Guanlong,MENG Wenbo,ZHANG Chong,et al. Hydrate inhibition and control method for deep water gas well testing[J]. Fault-Block Oil & Gas Field, 2018, 25(1): 107–110.
[4] 李文龙, 高德利, 杨进.海域天然气水合物钻完井的挑战及技术展望[J/OL].[2019-04-20].石油钻采工艺, http://kns.cnki.net/kcms/detail/13.1072.TE.20190411.1710.004.html. LI Wenlong, GAO Deli, YANG Jin. Progress and prospect in drilling technology for offshore natural gas hydrates[J/OL]. [2019-04-20]. Oil Drilling & Production Technogy. http://kns.cnki.net/kcms/detail/13.1072.TE.20190411.1710.004.html.
[5] 任冠龙,张崇,董钊,等. 深水气井测试过程中水合物相态曲线的研究与应用[J]. 钻井液与完井液, 2018, 35(4): 120–125. REN Guanlong, ZHANG Chong, DONG Zhao, et al. Study and application of phase curve of hydrates in deep water gas well testing[J]. Drilling Fluid & Completion Fluid, 2018, 35(4): 120–125.
[6] 宫智武,张亮,程海清,等. 海底天然气水合物分解对海洋钻井安全的影响[J]. 石油钻探技术, 2015, 43(4): 19–24. GONG Zhiwu, ZHANG Liang, CHENG Haiqing, et al. The influence of subsea natural gas hydrate dissociation on the safety of offshore drilling[J]. Petroleum Drilling Techniques, 2015, 43(4): 19–24.
[7] DUFFY D M, MOON C, RODGER P M. Computer-assisted design of oil additives: hydrate and wax inhibitors[J]. Molecular Physics, 2004, 102(2): 203–210. doi: 10.1080/00268970310001648717
[8] KVAMME B, HUSEBY G, FORRISDAHL O K. Molecular dynamics simulations of PVP kinetic inhibitor in liquid water and hydrate/liquid water systems[J]. Molecular Physics, 1997, 90(6): 979–992. doi: 10.1080/002689797171977
[9] KVAMME B, KUZNETSOVA T, AASOLDSEN K. Molecular dynamics simulations for selection of kinetic hydrate inhibitors[J]. Journal of Molecular Graphics and Modelling, 2005, 23(6): 524–536. doi: 10.1016/j.jmgm.2005.04.001
[10] STORR M T, TAYLOR P C, MONFORT J P, et al. Kinetic inhibitor of hydrate crystallization[J]. Journal of the American Chemical Society, 2004, 126(5): 1569–1576. doi: 10.1021/ja035243g
[11] 周国伟. 深水钻井液用动力学水合物抑制剂研究[D]. 青岛: 中国石油大学(华东), 2015. ZHOU Guowei. Study on kinetic gas hydrate inhibitor used in deepwater drilling fluid[D]. Qingdao: China University of Petro-leum(Huadong), 2015.
[12] GUTT C, ASMUSSEN B, PRESS W, et al. The structure of deuterated methane-hydrate[J]. Journal of Chemical Physics, 2000, 113(11): 4713–4721. doi: 10.1063/1.1288789
[13] KIRCHNER M T, BOESE R, BILLUPS W E, et al. Gas hydrate single-crystal structure analyses[J]. Journal of the American Che-mical Society, 2004, 126(30): 9407–9412. doi: 10.1021/ja049247c
[14] CARVER T J, DREW M G B, RODGER P M. Characterisation of the {111} growth planes of a type II gas hydrate and study of the mechanism of kinetic inhibition by poly(vinylpyrrolidone)[J]. Jour-nal of the Chemical Society, Faraday Transactions, 1996, 92(24): 5029–5033. doi: 10.1039/ft9969205029
[15] GREATHOUSE J A, CYGAN R T, SIMMONS B A. Vibrational spectra of methane clathrate hydrates from molecular dynamics si-mulation[J]. Journal of Physical Chemistry B, 2006, 110(13): 6428–6431. doi: 10.1021/jp060471t
[16] GENG Chunyu, HAN Qingzhen, WEN Hao, et al. Molecular dynamics simulation on the decomposition of type SII hydrogen hydrate and the performance of tetrahydrofuran as a stabiliser[J]. Molecular Simulation, 2010, 36(6): 474–483. doi: 10.1080/08927021003664041
[17] 白冬生. 气体水合物成核与生长的分子动力学模拟研究[D]. 北京: 北京化工大学, 2013. BAI Dongsheng. Molecular dynamics simulation of gas hydrate nucleation and growth[D]. Beijing: Beijing University of Chemical Technology, 2013.
[18] ZHENG Yuanyuan, ZAOUI A. How water and counterions diffuse into the hydrated montmorillonite[J]. Solid State Ionics, 2011, 203(1): 80–85. doi: 10.1016/j.ssi.2011.09.020
-
期刊类型引用(5)
1. 侯亚伟,刘超,徐中波,安玉华,李景玲. 多层水驱开发油田采收率快速预测方法. 石油钻探技术. 2022(05): 82-87 . 本站查看
2. 陈民锋,秦立峰,荣金曦,王兆琪. 低渗透应力敏感储层衰竭开发产量递减规律研究. 复杂油气藏. 2022(03): 78-83 . 百度学术
3. 孙元伟,程远方,张卫防,时凤霞,印树明. 致密储层应力敏感性分析及裂缝参数优化. 断块油气田. 2018(04): 493-497 . 百度学术
4. 庞伟. 页岩气井吸附气产出贡献率确定方法. 石油钻探技术. 2018(03): 86-92 . 本站查看
5. 闫健,付美涛,王瑞,刘晓娟,齐傲江. 测试条件对低渗气藏岩心应力敏感性的影响. 西安石油大学学报(自然科学版). 2018(04): 55-60 . 百度学术
其他类型引用(3)