深水钻井抗高温强抑制水基钻井液研制与应用

耿铁, 邱正松, 汤志川, 赵欣, 苗海龙

耿铁, 邱正松, 汤志川, 赵欣, 苗海龙. 深水钻井抗高温强抑制水基钻井液研制与应用[J]. 石油钻探技术, 2019, 47(3): 82-88. DOI: 10.11911/syztjs.2019036
引用本文: 耿铁, 邱正松, 汤志川, 赵欣, 苗海龙. 深水钻井抗高温强抑制水基钻井液研制与应用[J]. 石油钻探技术, 2019, 47(3): 82-88. DOI: 10.11911/syztjs.2019036
GENG Tie, QIU Zhengsong, TANG Zhichuan, ZHAO Xin, MIAO Hailong. The Development and Application of High Temperature Resistant and Strong Inhibitive Water-Based Drilling Fluid for Deepwater Drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 82-88. DOI: 10.11911/syztjs.2019036
Citation: GENG Tie, QIU Zhengsong, TANG Zhichuan, ZHAO Xin, MIAO Hailong. The Development and Application of High Temperature Resistant and Strong Inhibitive Water-Based Drilling Fluid for Deepwater Drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 82-88. DOI: 10.11911/syztjs.2019036

深水钻井抗高温强抑制水基钻井液研制与应用

基金项目: 国家重点基础研究发展计划(“973”计划)项目“深水油气井完井与测试优化方法”(编号:2015CB251205)和国家重大科技专项“环保钻井液与防漏堵漏新技术研究”(编号:2017ZX05032-004-005)联合资助
详细信息
    作者简介:

    耿铁(1974—),男,辽宁沈阳人,1997年毕业于沈阳化工学院精细化工专业,2009年获中国石油大学(华东)石油与天然气工程专业硕士学位,油气井工程专业在读博士研究生,主要从事海洋钻井液技术研究。E-mail:upcqiu@126.com

  • 中图分类号: TE254+.6

The Development and Application of High Temperature Resistant and Strong Inhibitive Water-Based Drilling Fluid for Deepwater Drilling

  • 摘要:

    深水钻井时存在复杂地层井眼失稳、大温差下钻井液流变性调控困难等技术难题,需要研发适用于深水钻井的抗高温强抑制性水基钻井液。以丙烯酰胺、烷基季铵盐和2–丙烯酰胺基–2–甲基丙磺酸为单体,采用水溶液聚合法合成了深水钻井用低相对分子质量的聚合物包被抑制剂Cap;以Cap为主要处理剂,并优选其他处理剂,构建了深水抗高温强抑制水基钻井液。室内性能评价表明,低相对分子质量的聚合物包被抑制剂Cap对钻井液流变性的影响较小,包被抑制作用强;深水抗高温强抑制水基钻井液低温流变性良好,可抗160 ℃高温,高温高压滤失量小于9 mL,三次岩屑滚动回收率大于70%,抑制性强,可分别抗25.0%NaCl、0.5%CaCl2和8.0%劣土污染。该钻井液在南海4口深水油气井钻井中进行了现场试验,取得了良好的应用效果,解决了低温增稠及井眼失稳等技术难题,具有现场推广应用价值。

    Abstract:

    Some technical challenges are often encountered in deepwater drilling such as borehole instability through complex formations and the rheological regulation of drilling fluids under conditions of large temperature differences. Thus it is necessary to develop high temperature resistant and strong inhibitive water-based drilling fluids for deepwater drilling. Taking acrylamide, alkyl quaternary ammonium salt and 2-acrylamido-2-methylpropanesulfonic acid as the monomers, a low relative molecular mass polymer encapsulating agent for deepwater drilling was synthesized through aqueous solution polymerization. Then, taking this agent as the main treatment agent, and other treatment agents, a deepwater high temperature resistant and strong inhibitive water-based drilling fluid was prepared. The results of laboratory evaluation demonstrated that the low relative molecular mass polymer encapsulating agent has little effect on the rheology of drilling fluid and in fact exhibits strong encapsulating ability. It presents a good low temperature rheology and high temperature resistance at 160 °C. Its filtration loss at high temperature and high pressure is within 9 mL, the triple-rolling cuttings recovery rate is over 70%, and the encapsulating ability is strong enough to resist fouling of 25.0% NaCl, 0.5% CaCl2 and 8.0% poor clay, respectively. This drilling fluid has been tested in deepwater drilling in the South China Sea, and achieved good on-site application effects, which solved the technical problems such as low temperature thickening and borehole instability, and also the potential for the promotion of future applications.

  • 图  1   包被抑制剂Cap的分子结构

    Figure  1.   Cap molecular structure of deep water encapsulating agent

    图  2   包被抑制剂Cap红外光谱测试结果

    Figure  2.   Infrared spectrum test results of encapsulating agent Cap

    表  1   L9(34)正交试验设计及试验结果

    Table  1   L9 (34) orthogonal test design and test results

    试验
    序号
    因素 回收率,
    %
    单体
    配比
    单体加
    量,%
    引发剂质量分数,% 反应时间/
    h
    1 6∶2∶1 20 0.2 4 68.49
    2 6∶2∶1 25 0.4 5 67.13
    3 6∶2∶1 30 0.6 6 61.56
    4 6∶3∶2 20 0.4 6 68.04
    5 6∶3∶2 25 0.6 4 71.96
    6 6∶3∶2 30 0.2 5 68.49
    7 8∶2∶1 20 0.6 5 66.94
    8 8∶2∶1 25 0.2 6 67.76
    9 8∶2∶1 30 0.4 4 71.50
    K1 0.657 0.678 0.683 0.707
    K2 0.695 0.689 0.689 0.675
    K3 0.687 0.672 0.668 0.658
    极差 0.041 0.019 0.023 0.053
    较优水平 6∶3∶2 25 0.4 4
    因素排序 2 4 3 1
    下载: 导出CSV

    表  2   不同流体在4和25 ℃温度下的流变参数

    Table  2   Rheological parameters of different test solutions at 4 °C/25 °C

    试验流体 表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    4 ℃ 25 ℃ 4 ℃ 25 ℃ 4 ℃ 25 ℃
     基浆+0.20%FA367 52.0 34.0 36.5 23.0 15.5 11.0
     基浆+0.25%KPAM 83.0 49.0 60.0 35.0 23.0 14.0
    基浆+0.25%Cap  40.5 28.0 29.5 20.5 11.0 7.5
    基浆+0.25%国外
    包被抑制剂  
    61.5 42.5 45.0 31.0 16.2 11.5
    下载: 导出CSV

    表  3   稳定剂STBHT加量对试验浆老化后性能的影响

    Table  3   Effect of stabilizer STBHT dosage on the performance of experimental slurry after aging

    STBHT加
    量,%
    表观黏度/
    (mPa·s)
    动切力/
    Pa
    高温高压滤失量/
    mL
    1.0 45.0 2.0 15.6
    2.0 67.0 7.0 8.8
    3.0 107.5 19.5 8.0
    4.0 77.5 14.5 6.0
     注:老化条件为150 ℃下老化16 h。
    下载: 导出CSV

    表  4   抗高温降滤失剂优选试验结果

    Table  4   Experimental results of a high temperature resistant filtrate reducer

    试验浆 pH值 API滤失量/
    mL
    高温高压
    滤失量/mL
    基浆 9.0 21.0 >50.0
    基浆+1.0% DRISTEMP 9.0 7.5 19.2
    基浆+1.0% HTFL 9.0 8.2 20.6
    基浆+1.0% PSC 9.5 11.4 25.4
    基浆+1.0% PJA-2 9.5 10.6 24.8
    基浆+1.0% SF 9.5 15.2 36.8
    基浆+1.0% SMP-1 9.0 12.2 28.2
    基浆+1.0% SMP-2 9.5 7.8 19.2
    基浆+1.0% CXB-3 9.0 10.4 22.2
    下载: 导出CSV

    表  5   不同温度老化前后钻井液性能测试结果

    Table  5   Results of drilling fluid performance test before and after aging at different temperatures

    条件 表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    静切力/Pa API滤失量/
    mL
    高温高压
    滤失量/mL
    pH值 密度/
    (kg·L–1)
    极压润滑
    系数
    滤饼黏滞
    系数
    初切 终切
    老化前 77 59 18 10 14 2.0 10 1.50
    120℃/16 h 71 59 12 6 10 2.2 5.6 9 1.49 0.085 1 0.119
    140℃/16 h 68 54 14 7 11 2.6 6.2 9 1.50 0.085 9 0.117
    160℃/16 h 67 50 17 5 7 2.4 8.8 9 1.49 0.083 6 0.112
    170℃/16 h 50 38 12 4 8 8.2 25.4 9 1.50 0.087 9 0.128
    180℃/16 h 34 33 1 1 1 16.8 60.2 9 1.50 0.092 5 0.126
     注:高温高压滤失量测试条件为同一老化温度/3.5 MPa。
    下载: 导出CSV

    表  6   深水抗高温强抑制钻井液低温流变性测试结果

    Table  6   Results of low temperature rheological test for deep water high temperature resistant and strong inhibitive drilling fluid

    阶段 温度/℃ 表观黏度/(mPa·s) 塑性黏度/(mPa·s) 动切力/Pa
    升温 4 96 73 23
    8 92 69 23
    15 85 65 20
    25 77 59 18
    40 68 51 17
    50 65 49 16
    降温 40 70 57 13
    25 72 63 9
    15 80 69 11
    8 94 71 23
    4 97 73 24
    下载: 导出CSV

    表  7   岩屑三次滚动回收率测试结果

    Table  7   Results of three times rolling cuttings recovery rate test

    流体 滚动回收率,%
    一次 二次 三次
    清水 31.21 10.51 3.60
    深水抗高温强抑制水基钻井液 88.35 80.64 73.66
    油基钻井液 93.87 84.72 74.22
    下载: 导出CSV

    表  8   深水抗高温强抑制钻井液抗污染测试结果

    Table  8   Results of fouling resistant test for deep water high temperature resistant and strong inhibitive drilling fluid

    污染物 表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    pH值 高温高压
    滤失量/mL
    67 50 17 9 8.8
    3.0%劣土 83 53 30 9 7.2
    5.0%劣土 86 59 27 9 8.4
    8.0%劣土 95 73 22 9 12.8
    0.3%CaCl2 73 51 22 9 9.8
    0.5%CaCl2 89 62 27 9 13.2
    1.0%CaCl2 114 79 35 7 19.6
    5.0%NaCl 75 60 15 9 9.4
    15.0% NaCl 91 76 15 9 10.2
    25.0% NaCl 115 85 30 7 18.8
    下载: 导出CSV

    表  9   L-3井不同开次钻井液的性能

    Table  9   Performance of drilling fluids in various spud sections of Well L-3

    开次 密度/(kg·L–1) pH值 漏斗黏度 /s 塑性黏度/(mPa·s) 动切力/Pa 中压滤失量/mL 滤饼厚度/mm 高温高压滤失量/mL
    二开 1.15~1.18 10 61–65 34 14 2.8 0.4
    三开 1.20~1.24 10 89–91 48 11 3.8 0.6 11.8
    下载: 导出CSV
  • [1] 王松,宋明全,刘二平. 国外深水钻井液技术进展[J]. 石油钻探技术, 2009, 37(3): 8–12. doi: 10.3969/j.issn.1001-0890.2009.03.002

    WANG Song, SONG Mingquan, LIU Erping. Development of foreign deepwater drilling fluid[J]. Petroleum Drilling Techniques, 2009, 37(3): 8–12. doi: 10.3969/j.issn.1001-0890.2009.03.002

    [2] 胡文,程玉生,李怀科,等. 深水高温高压井钻井液技术[J]. 钻井液与完井液, 2017, 34(1): 70–76. doi: 10.3969/j.issn.1001-5620.2017.01.013

    HU Wenjun, CHENG Yusheng, LI Huaike, et al. Drilling fluid technology for deepwater HTHP well[J]. Drilling Fluid & Completion Fluid, 2017, 34(1): 70–76. doi: 10.3969/j.issn.1001-5620.2017.01.013

    [3] 罗健生,李自立,罗曼. 深水钻井液国内外发展现状[J]. 钻井液与完井液, 2018, 35(3): 1–7. doi: 10.3969/j.issn.1001-5620.2018.03.001

    LUO Jiansheng, LI Zili, LUO Man, et al. Status quo of the development of deep water drilling fluids worldwide[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 1–7. doi: 10.3969/j.issn.1001-5620.2018.03.001

    [4] 邱正松,赵欣. 深水钻井液技术现状与发展趋势[J]. 特种油气藏, 2013, 20(3): 1–7. doi: 10.3969/j.issn.1006-6535.2013.03.001

    QIU Zhengsong, ZHAO Xin. Current status and developing trend of deepwater drilling fluid technology[J]. Special Oil & Gas Reserviors, 2013, 20(3): 1–7. doi: 10.3969/j.issn.1006-6535.2013.03.001

    [5]

    ZHAO Xin, QIU Zhengsong, HUANG Weian, et al. Mechanism and method for controlling low-temperature rheology of water-based drilling fluids in deepwater drilling[J]. Journal of Petroleum Science & Engineering, 2017, 154: 405–416.

    [6] 刘和兴,方满宗,刘智勤,等. 南海西部陵水区块超深水井喷射下导管技术[J]. 石油钻探技术, 2017, 45(1): 10–16.

    LIU Hexing, FANG Manzong, LIU Zhiqin, et al. Jetting-based conductor running technology used in ultra-deep water well of Lingshui Block in the Western South China Sea[J]. Petroleum Drilling Techniques, 2017, 45(1): 10–16.

    [7] 路保平,李国华. 西非深水钻井完井关键技术[J]. 石油钻探技术, 2013, 41(3): 1–6. doi: 10.3969/j.issn.1001-0890.2013.03.001

    LU Baoping, LI Guohua. Key technologies for deepwater drilling & completion in West Africa[J]. Petroleum Drilling Techniques, 2013, 41(3): 1–6. doi: 10.3969/j.issn.1001-0890.2013.03.001

    [8] 孙宝江,张振楠. 南海深水钻井完井主要挑战与对策[J]. 石油钻探技术, 2015, 43(4): 1–7.

    SUN Baojiang, ZHANG Zhennan. Challenges and countermeasures for the drilling and completion of deepwater wells in the South China Sea[J]. Petroleum Drilling Techniques, 2015, 43(4): 1–7.

    [9] 许定江,练章华,张强,等. 深水钻完井工程设计要点分析[J]. 断块油气田, 2017, 24(1): 131–136.

    XU Dingjiang, LIAN Zhanghua, ZHANG Qiang, et al. Key points of drilling and completion design for deepwater well[J]. Fault-Block Oil & Gas Field, 2017, 24(1): 131–136.

    [10] 田荣剑,罗健生,李自立,等. 环保型深水水基钻井液体系的研究[J]. 科学技术与工程, 2010, 10(32): 7910–7914. doi: 10.3969/j.issn.1671-1815.2010.32.010

    TIAN Rongjian, LUO Jiansheng, LI Zili, et al. Study of the environmental-protecting water based mud in application to deep water drilling[J]. Science Technology and Engineering, 2010, 10(32): 7910–7914. doi: 10.3969/j.issn.1671-1815.2010.32.010

    [11]

    OYEDOH E, ODUMUGBO C, EBEWELE E O. Suitability of Nigerian Bentonite in drilling fluid formulation[J]. International Journal of Engineering Research in Africa, 2016, 24: 26–34. doi: 10.4028/www.scientific.net/JERA.24

    [12]

    MENG Shuai, SONG Shidi, CHE Chidong, et al. Internal flow effect on the parametric instability of deepwater drilling risers[J]. Ocean Engineering, 2018, 149: 305–312. doi: 10.1016/j.oceaneng.2017.12.031

    [13]

    WANG Xiaohui, GUAN Zhichuan, XU Yuqiang, et al. Signal analysis of acoustic gas influx detection method at the bottom of marine riser in deepwater drilling[J]. Journal of Process Control, 2018, 66: 23–38. doi: 10.1016/j.jprocont.2017.12.008

    [14] 赵欣,邱正松,张永君,等. 复合盐层井壁失稳机理及防塌钻井液技术[J]. 中南大学学报(自然科学版), 2016, 47(11): 3832–3838.

    ZHAO Xin, QIU Zhengsong, ZHANG Yongjun, et al. Wellbore instability mechanism and wellbore stabilizing drilling fluid technique for drilling compound salt formation[J]. Journal of Central South University (Science and Technology), 2016, 47(11): 3832–3838.

    [15] 钟汉毅,邱正松,黄维安, 等. 聚胺高性能水基钻井液特性评价及应用[J]. 科学技术与工程, 2013, 13(10): 2803–2807. doi: 10.3969/j.issn.1671-1815.2013.10.036

    ZHONG Hanyi, QIU Zhengsong, HUANG Weian, et al. Properties evaluation and application of polyamine high performance water-based drilling fluid[J]. Science Technology and Engineering, 2013, 13(10): 2803–2807. doi: 10.3969/j.issn.1671-1815.2013.10.036

    [16] 李怀科,张伟,马跃. 深水窄密度窗口钻井液技术改进及现场应用[J]. 油田化学, 2018, 35(2): 209–213.

    LI Huaike, ZHANG Wei, MA Yue. Technology improvement and field application of deep water drilling fluid for narrow drilling window[J]. Oilfield Chemistry, 2018, 35(2): 209–213.

    [17] 高涵,许林,许明标,等. 深水水基恒流变钻井液流变特性研究[J]. 钻井液与完井液, 2018, 35(3): 60–67. doi: 10.3969/j.issn.1001-5620.2018.03.010

    GAO Han, XU Lin, XU Mingbiao, et al. Study on rheology of consistent rheology water base drilling fluid for deep water drilling[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 60–67. doi: 10.3969/j.issn.1001-5620.2018.03.010

    [18] 王培义,马鹏鹏,张贤印,等. 中低温地热井钻井完井工艺技术研究与实践[J]. 石油钻探技术, 2017, 45(4): 27–32.

    WANG Peiyi, MA Pengpeng, ZHANG Xianyin, et al. Drilling and completion technologies for of geothermal wells with medium and low temperatures[J]. Petroleum Drilling Techniques, 2017, 45(4): 27–32.

    [19] 徐加放,丁廷稷,张瑞,等. 水基钻井液低温流变性调控用温敏聚合物研制及性能评价[J]. 石油学报, 2018, 39(5): 597–603.

    XU Jiafang, DING Tingji, ZHANG Rui, et al. Development and performance evaluation of thermo-sensitive polymer for low-temperature rheology control of water-based drilling fluid[J]. Acta Petrolei Sinica, 2018, 39(5): 597–603.

    [20]

    LU Y H, CHEN Mingqing, JIN Yuanlin, et al. The Development and application of an environmentally friendly encapsulator EBA-20[J]. Petroleum Science and Technology, 2012, 30(21): 2227–2235. doi: 10.1080/10916466.2011.569813

    [21]

    ZHONG Hanyi, QIU Zhengsong, HUANG Weian, et al. Successful application of unique polyamine high performance waterbased drilling fluid in Bohai Bay shale formations[R]. IPTC-16721-MS, 2013.

    [22] 李怀科,罗健生,李自立,等. 深水用低分子量包被剂PF-UCAP的合成及性能评价[J]. 石油化工应用, 2013, 32(9): 91–93. doi: 10.3969/j.issn.1673-5285.2013.09.023

    LI Huaike, LUO Jiansheng, LI Zili, et al. Research and evacuation of a low molecular encapsulator PF-UCAP for deep-water[J]. Petro-chemical Industry Application, 2013, 32(9): 91–93. doi: 10.3969/j.issn.1673-5285.2013.09.023

    [23] 钟汉毅. 聚胺强抑制剂研制及其作用机理研究[D]. 青岛: 中国石油大学(华东), 2012.

    ZHONG Hanyi. Development and mechanism study on high performance polyamine inhibitor in water-based drilling fluid[D]. Qingdao: China University of Petroleum(Huadong), 2012.

  • 期刊类型引用(5)

    1. 刘喜亮,王雪松,魏久勇,刘雄,周志奇. 超深水浅层钻井液体系研究与应用. 石油化工应用. 2024(12): 38-42 . 百度学术
    2. 李艳飞,李三喜,蔡斌,葛俊瑞,吴健. 一种水基钻井液在高温高压下的流变特性研究. 当代化工研究. 2022(19): 179-181 . 百度学术
    3. 刘书杰,吴怡,谢仁军,焦金刚. 深水深层井钻井关键技术发展与展望. 石油钻采工艺. 2021(02): 139-145 . 百度学术
    4. 邹星星,李佳旭,刘彦青,王海兵,杨金生,伊婷婷,张鸣. 深水钻井抗高温水基钻井液体系研究及应用. 钻采工艺. 2020(02): 99-102+6 . 百度学术
    5. 杨洪烈,吴娇,汪夯志,吴宇. 海洋深水钻井液体系研究进展. 化学与生物工程. 2019(12): 12-16 . 百度学术

    其他类型引用(2)

图(2)  /  表(9)
计量
  • 文章访问数:  5472
  • HTML全文浏览量:  2238
  • PDF下载量:  90
  • 被引次数: 7
出版历程
  • 收稿日期:  2018-11-25
  • 修回日期:  2019-02-26
  • 网络出版日期:  2019-03-15
  • 刊出日期:  2019-04-30

目录

    /

    返回文章
    返回