油基钻井液用冲洗液PC–W31L的制备及性能研究

陈小华, 张福铭, 赵琥, 代丹, 王雪山

陈小华, 张福铭, 赵琥, 代丹, 王雪山. 油基钻井液用冲洗液PC–W31L的制备及性能研究[J]. 石油钻探技术, 2019, 47(2): 81-86. DOI: 10.11911/syztjs.2019015
引用本文: 陈小华, 张福铭, 赵琥, 代丹, 王雪山. 油基钻井液用冲洗液PC–W31L的制备及性能研究[J]. 石油钻探技术, 2019, 47(2): 81-86. DOI: 10.11911/syztjs.2019015
CHEN Xiaohua, ZHANG Fuming, ZHAO Hu, DAI Dan, WANG Xueshan. The Development and Properties of PC–W31L Flushing Fluid for Oil-Based Drilling Fluid[J]. Petroleum Drilling Techniques, 2019, 47(2): 81-86. DOI: 10.11911/syztjs.2019015
Citation: CHEN Xiaohua, ZHANG Fuming, ZHAO Hu, DAI Dan, WANG Xueshan. The Development and Properties of PC–W31L Flushing Fluid for Oil-Based Drilling Fluid[J]. Petroleum Drilling Techniques, 2019, 47(2): 81-86. DOI: 10.11911/syztjs.2019015

油基钻井液用冲洗液PC–W31L的制备及性能研究

详细信息
    作者简介:

    陈小华(1979—),女,湖北黄冈人,2002年毕业于江汉石油学院石油工程专业,2005年获中国石油大学(北京)油气田开发工程专业硕士学位,主要从事酸化压裂、固井技术等方面的研究工作。E-mail: chenxh13@cosl.com.cn

  • 中图分类号: TE252

The Development and Properties of PC–W31L Flushing Fluid for Oil-Based Drilling Fluid

  • 摘要:

    针对油基钻井液用水包油型冲洗液无法用润湿测定仪检测混合液(即油基钻井液与冲洗液的混合液,全文同)电导率的问题,优选复配了合适的表面活性剂和溶剂,并引入一种含氮类聚合物,制备了油基钻井液用冲洗液PC–W31L。分析了PC–W31L冲洗油基钻井液的作用机理,并对其性能进行了评价。结果表明:PC–W31L对油基钻井液的冲洗效果良好,冲洗界面为水润湿状态,能使油基钻井液由油连续相完全转变为水连续相;PC–W31L与油基钻井液、水泥浆的流变相容性良好,对水泥浆稠化时间和抗压强度的影响均在可控范围内。研究表明,冲洗液PC–W31L不但对油基钻井液的冲洗效果良好,且能用润湿测定仪测定其水润湿能力。

    Abstract:

    We address the problem of not being able to detect the conductivity change of mixed liquid (oil-based drilling fluid and flushing fluid) in oil-based drilling fluid. Flushed by oil-in-water based flushing fluid with the wetting tester, the proper surfactant and solvent were optimized and compounded, and a nitrogen-containing polymer was introduced to develop the PC–W31L flushing fluid for oil-based drilling fluid. The flushing mechanism of this fluid on oil-based drilling fluid was analyzed and its performance was evaluated. The results showed that the flushing effect of PC–W31L flushing liquid on oil-based drilling fluid was optimal, the flushing interface was in water wet state, which can completely transform oil-based drilling fluid from the oil continuous phase to the water continuous phase. The rheology compatibility of this fluid is better with oil-based drilling fluid and cement slurry respectively, and its influences on the thickening time and strength of cement slurry are all within the controllable range. The results of performance evaluation indicated that PC–W31L flushing liquid not only had a good flushing effect on oil-based drilling fluid, but also allowed the wetting tester to detect its water wetting capacity.

  • 图  1   冲洗机理

    Figure  1.   Flushing mechanism

    图  2   主剂A加量对冲洗效果的影响

    Figure  2.   Influence of the dosage of main agent A on the flushing effect

    图  3   辅剂B加量对冲洗效果的影响

    Figure  3.   Influence of the dosage of assisting agent B on flushing effect

    图  4   不同密度PC–W31L冲洗相应密度油基钻井液的效果

    Figure  4.   The effect of oil-based drilling fluid with different densities flushed by PC–W31L flushing fluids with corresponding density

    图  5   不同密度PC–W31L冲洗油基钻井液后的界面水润湿效果

    Figure  5.   Interface water wetting effect of oil-based drilling fluid flushed by PC–W31L flushing fluids with different densities

    图  6   不同密度PC–W31L对相应密度油基钻井液的水润湿能力

    Figure  6.   The water wetting ability of PC–W31L flushing fluids with different densities for oil-based drilling fluid with corresponding density

    表  1   密度1.20 kg/L的PC–W31L与相同密度油基钻井液的流变相容性

    Table  1   Rheological compatibility of PC–W31L flushing fluid with density of 1.20 kg/L and oil-based drilling fluid of the same density

    体积比 六速黏度计读数 R
    ϕ600 ϕ300 ϕ200 ϕ100 ϕ6 ϕ3
    0∶100 32 21 16 11 2 1
    5∶95 11 7 5 4 1 1 –17
    25∶75 18 9 5 3 1 1 –18
    50∶50 16 8 6 4 1 1 –17
    75∶25 49 27 19 11 2 1 –10
    95∶5 68 42 31 19 6 4 –2
    100∶0 68 43 32 21 7 6
     注:①为PC–W31L与油基钻井液的体积比,下同。
    下载: 导出CSV

    表  2   密度为1.80 kg/L的PC–W31L与相同密度油基钻井液的流变相容性

    Table  2   The rheological compatibility of PC–W31L flushing fluid with density of 1.80 kg/L and oil-based drilling fluid with the same density

    体积比 六速旋转黏度计读数 R
    ϕ600 ϕ300 ϕ200 ϕ100 ϕ6 ϕ3
    0∶100 52 32 24 14 2 1
    5∶95 64 34 27 17 3 2 –8
    25∶75 58 32 24 15 6 4 –10
    50∶50 44 22 16 10 4 2 –15
    75∶25 51 28 21 13 5 4 –12
    95∶5 82 48 37 24 9 7 –1
    100∶0 75 47 37 25 11 9
    下载: 导出CSV

    表  3   密度为1.20 kg/L的PC–W31L与密度为1.50 kg/L水泥浆的流变相容性

    Table  3   Rheological compatibility of PC–W31L flushing fluid with density of 1.20 kg/L and cement slurry with density of 1.50 kg/L

    体积比 六速旋转黏度计读数 R
    ϕ600ϕ300ϕ200ϕ100ϕ6ϕ3
    95∶5 38 27 22 14 4 2 –57
    75∶25 67 42 29 19 4 3 –52
    50∶50 73 46 33 21 4 3 –50
    25∶75 110 67 50 31 6 4 –40
    5∶95 196 131 101 67 13 7 –4
    0∶100 203 137 106 71 15 8
     注:②为PC–W31L与水泥浆的体积比,下同。
    下载: 导出CSV

    表  4   密度为1.80 kg/L的PC–W31L与密度为1.90 kg/L水泥浆的流变相容性

    Table  4   The rheological compatibility of PC–W31L flushing fluid with density of 1.80 kg/L and cement slurry with density of 1.90 kg/L

    体积比 六速旋转黏度计读数 R
    ϕ600ϕ300ϕ200ϕ100ϕ6ϕ3
    95∶5 56 34 18 13 2 1 –48
    75∶25 65 39 21 16 3 1 –45
    50∶50 82 51 32 21 4 2 –40
    25∶75 124 71 48 26 5 2 –35
    5∶95 232 139 98 55 7 4 –6
    0∶100 262 151 108 61 8 5
    下载: 导出CSV

    表  5   密度为1.20 kg/L的PC–W31L对密度为1.50 kg/L水泥浆稠化时间及抗压强度的影响

    Table  5   Effect of PC–W31L flushing fluid with density of 1.20 kg/L on the thickening time and compressive strength of cement slurry with density of 1.50 kg/L

    体积比 稠化时间/min 24 h抗压强度/MPa
    100∶0 148 17.2
    95∶5 163 15.3
    85∶15 178 11.1
    75∶25 203 6.4
     注:测试条件为90 ℃×40 MPa。
    下载: 导出CSV

    表  6   密度为1.80 kg/L的PC–W31L对密度为1.90 kg/L水泥浆稠化时间及抗压强度的影响

    Table  6   Effect of PC–W31L flushing fluid with density of 1.80 kg/L on the thickening time and compressive strength of cement slurry with density of 1.90 kg/L

    体积比 稠化时间/min 24 h抗压强度/MPa
    100∶0 204 22.2
    95∶5 203 18.2
    85∶15 188 14.3
    75∶25 176 9.3
     注:测试条件为120 ℃×60 MPa。
    下载: 导出CSV
  • [1] 徐明, 杨智光, 肖海东, 等. 油包水钻井液耐高温冲洗液YJC-1的研究与应用[J]. 钻井液与完井液, 2001, 18(4): 11–15. doi: 10.3969/j.issn.1001-5620.2001.04.004

    XU Ming, YANG Zhiguang, XIAO Haidong, et al. High temperature resisting flushing fluid YJC-1 for oil based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2001, 18(4): 11–15. doi: 10.3969/j.issn.1001-5620.2001.04.004

    [2] 王辉,刘潇冰,耿铁,等. 微乳液型油基钻井液冲洗液作用机理及研究进展[J]. 钻井液与完井液, 2015, 32(4): 96–100.

    WANG Hui, LIU Xiaobing, GENG Tie, et al. Functioning mechanism of and research progress in micro emulsion flushing fluid used in oil base mud drilling[J]. Drilling Fluid & Completion Fluid, 2015, 32(4): 96–100.

    [3] 陈大钧,王雪敏,吴永胜,等. 高密度高效冲洗液XM-1[J]. 钻井液与完井液, 2015, 32(3): 70–72.

    CHEN Dajun, WANG Xuemin, WU Yongsheng, et al. High density flushing fluid XM-1[J]. Drilling Fluid & Completion Fluid, 2015, 32(3): 70–72.

    [4] 王翀, 谢飞燕, 刘爱萍, 等. 油基钻井液用冲洗液BCS-020L研制及应用[J]. 石油钻采工艺, 2013, 35(6): 36–39.

    WANG Chong, XIE Feiyan, LIU Aiping, et al. Research and application of flushing fluid BCS-020L for oil-based drilling fluid cleaning[J]. Oil Drilling & Production Technology, 2013, 35(6): 36–39.

    [5] 范鹏, 康建平, 吴村章, 等. 油水双效PC-W21L冲洗液在PY30-1气田固井作业中的应用[J]. 石油天然气学报, 2011, 33(5): 189–192.

    FAN Peng, KANG Jianping, WU Cunzhang, et al. Application of oil-water double effect flushing fluid PC-W21 L in cementing of PY30-1 Gas Field[J]. Journal of Oil and Gas Technology, 2011, 33(5): 189–192.

    [6] 唐世忠,饶富培,吴华,等. 固井冲洗液冲洗效率评价方法[J]. 石油钻采工艺, 2016, 38(5): 601–605.

    TANG Shizhong, RAO Fupei, WU Hua, et al. Assessment method for flushing efficiency of flushing liquid in cementing[J]. Oil Drilling & Production Technology, 2016, 38(5): 601–605.

    [7] 王乐顶,杨远光,谢应权,等. 新型固井冲洗液评价装置适用性分析[J]. 石油钻探技术, 2017, 45(1): 73–77.

    WANG Leding, YANG Yuanguang, XIE Yingquan, et al. Applicability of a new device for cementing flushing fluid evaluation[J]. Petroleum Drilling Techniques, 2017, 45(1): 73–77.

    [8] 李韶利,周占云,姚志翔,等. 一种可视化冲洗液评价装置与方法[J]. 钻井液与完井液, 2016, 33(2): 92–95.

    LI Shaoli, ZHOU Zhanyun, YAO Zhixiang, et al. A visual test apparatus for flushing fluid evaluation and the evaluation method[J]. Drilling Fluid & Completion Fluid, 2016, 33(2): 92–95.

    [9]

    HEATHMAN J, WILSON J M, CANTRELL J H, et al. Removing subjective judgment from wettability analysis aids displacement[R]. SPE 59135, 2000

    [10] 李春霞, 黄进军, 徐英. 一种新型高温稳定的油基钻井液润湿反转剂[J]. 西南石油学院学报, 2002, 24(5): 22–24. doi: 10.3863/j.issn.1674-5086.2002.05.007

    LI Chunxia, HUANG Jinjun, XU Ying. A new high temperature stable wettability reversal agent in oil base mud[J]. Journal of Southwest Petroleum Institute, 2002, 24(5): 22–24. doi: 10.3863/j.issn.1674-5086.2002.05.007

    [11] GB/T 19139—2012 油井水泥实验方法[S].

    GB/T 19139—2012 Testing of well cements[S].

    [12]

    API RP 10B-2—2013 Recommended practice for testing[S].

  • 期刊类型引用(1)

    1. 王军磊,位云生,曹正林,陈东,唐海发. 基于相渗滞后效应的水驱裂缝性气藏注N_2提高天然气采收率机理. 天然气工业. 2025(03): 96-111 . 百度学术

    其他类型引用(0)

图(6)  /  表(6)
计量
  • 文章访问数:  882
  • HTML全文浏览量:  727
  • PDF下载量:  42
  • 被引次数: 1
出版历程
  • 收稿日期:  2018-06-16
  • 修回日期:  2018-12-23
  • 网络出版日期:  2019-04-18
  • 刊出日期:  2019-02-28

目录

    /

    返回文章
    返回