Quantitative Evaluation Model of Water Blocking Damage in Low Permeability Gas Reservoirs
-
摘要:
为了定量评价低渗透气藏潜在的水锁损害,基于相对渗透率和启动压力梯度模型,建立了低渗透气藏水锁损害定量评价模型,分析了水锁损害深度、启动压力梯度和应力敏感对水锁损害程度的影响。分析发现,该模型的预测结果与致密砂岩水锁损害实验结果吻合较好;水锁损害深度越大,潜在的水锁损害程度越严重;流体启动压力梯度越大,液相越难以返排,添加表面活性剂能够提高流体返排效率;高返排压差有利于液相返排,但应力敏感可能导致水锁损害程度增大,在启动压力梯度较低时影响尤其明显。研究结果表明,水锁损害是水相滞留引起的气相相对渗透率降低与应力敏感导致的绝对渗透率降低协同作用的结果,确定合理的返排压差能够减轻水锁对低渗透气藏的损害。
Abstract:In this study, the goal was to quantitatively evaluate the potential water locking damage in low permeability gas reservoirs. To do so, a quantitative evaluation model for water locking damage in low permeability gas reservoirs was established based on the relative permeability and starting pressure gradient models. In the doing so, we analyzed the influences of water locking damage depth, starting pressure gradient and stress sensitivity on the water blocking damage degree. The analysis results suggested that the predicted results are better matched with the data of water locking damage experiment in tight sandstone. The greater the depth of water locking damage, the more serious the potential water locking damage; the larger the fluid starting pressure gradient, the more difficult for the liquid phase to cleanup. Herethe fluid cleanup efficiency could be improved by adding surfactant. A cleanup differential pressure is beneficial to liquid phase cleanup, while stress sensitivity may exaggerate the water locking damage, especially when the starting pressure gradient is low. Studies showed that water locking damage is the synergistic effect of reduced gas phase relative permeability caused by water phase retention and reduced absolute permeability caused by stress sensitivity, and the reasonably determined cleanup differential pressure is conducive to alleviating the water locking damage in low permeability gas reservoirs.
-
-
表 1 参数拟合结果
Table 1 The results of parameters fitting
编号 μ/(mPa·s) m/(MPa·m–1) n R2 均方根误差/
(MPa·m–1)注入水 0.850 0.240 1.141 0.913 0.170 地层水 0.910 0.053 0.872 0.975 0.013 表面活性剂溶液 0.930 0.025 0.779 0.926 0.020 表 2 致密砂岩基本参数
Table 2 Basic parameters of tight sandstone
序号 流体 岩样号 Kw/mD Φ,% Δx/cm R2 均方根误差/(MPa·m–1) 1 注入水 S3 0.181 3.070 6.450 0.992 0.006 2 S2-29 0.689 12.000 4.480 0.919 0.036 3 S2-75 0.144 5.900 4.459 0.980 0.005 4 S9 0.054 3.160 2.620 0.962 0.016 5 S2 0.217 5.280 2.810 0.913 0.028 6 模拟地层水 Z16-5 0.058 7.560 6.580 0.981 0.006 7 S240-8 0.091 9.860 5.820 0.981 0.003 8 T39-5 0.082 9.270 5.770 0.818 0.010 表 3 不同方法计算的评价指标对比
Table 3 Comparison on the results of different evaluation methods
计算方法 计算结果 损害程度 Dpt 0.82 强 APTi 0.43 中等 MAPTi 0.22 中等 BVW 2.27 中等 PTC 0.97 强 -
[1] 赵宏波, 贾进孝, 孟令涛, 等. 一种新型降水锁洗井液NDF-1的性能评价及现场试验[J]. 石油钻探技术, 2015, 43(6): 87–92 http://d.old.wanfangdata.com.cn/Periodical/syztjs201506016 ZHAO Hongbo, JIA Jinxiao, MENG Lingtao, et al. Performance evaluation and field application of a novel water lock reducing flushing fluid DNF-1[J]. Petroleum Drilling Techniques, 2015, 43(6): 87–92 http://d.old.wanfangdata.com.cn/Periodical/syztjs201506016
[2] YANG Xu, MENG Yingfeng, SHI Xiangchao, et al. Influence of porosity and permeability heterogeneity on liquid invasion in tight gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2017, 37: 169–177 doi: 10.1016/j.jngse.2016.11.046
[3] 韩成,黄凯文,韦龙贵,等. 海上低渗储层防水锁强封堵钻井液技术[J]. 钻井液与完井液, 2018, 35(5): 67–71 HAN Cheng, HUANG Kaiwen, WEI Longgui, et al. A drilling fluid with water block preventive capacity and strong plugging capacity for offshore low permeability reservoir drilling[J]. Drilling Fluid & Completion Fluid, 2018, 35(5): 67–71
[4] 杨旭, 孟英峰, 李皋, 等. 考虑水锁损害的致密砂岩气藏产能分析[J]. 天然气地球科学, 2017, 28(5): 812–818 http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201705016 YANG Xu, MENG Yingfeng, LI Gao, et al. Productivity analysis of tight sandstone gas reservoirs considering water blocking damage[J]. Natural Gas Geoscience, 2017, 28(5): 812–818 http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201705016
[5] 韦青, 李治平, 白瑞婷, 等. 微观孔隙结构对致密砂岩渗吸影响的试验研究[J]. 石油钻探技术, 2016, 44(5): 109–116 http://d.old.wanfangdata.com.cn/Periodical/syztjs201605019 WEI Qing, LI Zhiping, BAI Ruiting, et al. An experimental study on the effect of microscopic pore structure on spontaneous imbibition in tight sandstones[J]. Petroleum Drilling Techniques, 2016, 44(5): 109–116 http://d.old.wanfangdata.com.cn/Periodical/syztjs201605019
[6] 唐洪明, 朱柏宇, 王茜, 等. 致密砂岩气层水锁机理及控制因素研究[J]. 中国科学: 技术科学, 2018, 48(5): 537–547 http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201805008.htm TANG Hongming, ZHU Baiyu, WANG Xi, et al. Mechanism and control factors of water blocking in tight sandstone gas reservoir[J]. Scientia Sinica (Technologica), 2018, 48(5): 537–547 http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201805008.htm
[7] 唐洪明, 徐诗雨, 王茜, 等. 克拉苏气田超致密砂岩气储层水锁损害[J]. 断块油气田, 2017, 24(4): 541–545 http://d.old.wanfangdata.com.cn/Periodical/dkyqt201704023 TANG Hongming, XU Shiyu, WANG Xi, et al. Water blocking damage of hyper-tight sandstone gas reservoir in Kelasu Gas Field[J]. Fault-Block Oil & Gas Field, 2017, 24(4): 541–545 http://d.old.wanfangdata.com.cn/Periodical/dkyqt201704023
[8] BENNION D B, THOMAS F B, BIETZ R F, et al. Water and hydrocarbon phase trapping in porous media-diagnosis, prevention and treatment[J]. Journal of Canadian Petroleum Technology, 1996, 35(10): 29–36
[9] DAVIS B B J, WOOD W D. Maximizing economic return by minimizing or preventing aqueous phase trapping during completion and stimulation operations[R]. SPE 90170, 2004.
[10] YOU Lijun, KANG Yili. Integrated evaluation of water phase trapping damage potential in tight gas reservoirs[R]. SPE 122034, 2009.
[11] SABOORIAN-JOOYBARI H, POURAFSHARY P. Potential severity of phase trapping in petroleum reservoirs: an analytical approach to prediction[R]. SPE 183631, 2016.
[12] 王茜,王双威,唐胜蓝,等. 基于致密砂岩气藏初始含水饱和度的水锁伤害评价[J]. 钻井液与完井液, 2017, 34(6): 41–45 doi: 10.3969/j.issn.1001-5620.2017.06.008 WANG Xi, WANG Shuangwei, TANG Shenglan, et al. Permeability impairment by water block in tight sandstone gas reservoirs with Initial water saturation[J]. Drilling Fluid & Completion Fluid, 2017, 34(6): 41–45 doi: 10.3969/j.issn.1001-5620.2017.06.008
[13] 蒋官澄, 王晓军, 关键, 等. 低渗特低渗储层水锁损害定量预测方法[J]. 石油钻探技术, 2012, 40(1): 69–73 doi: 10.3969/j.issn.1001-0890.2012.01.014 JIANG Guancheng, WANG Xiaojun, GUAN Jian, et al. The quantitative prediction method of water blocking damage in low and extra-low permeability reservoir[J]. Petroleum Drilling Techniques, 2012, 40(1): 69–73 doi: 10.3969/j.issn.1001-0890.2012.01.014
[14] 张益, 李军刚, 佟晓华, 等. 基于神经网络信息融合技术预测气藏水锁[J]. 特种油气藏, 2011, 18(2): 102–103, 110 doi: 10.3969/j.issn.1006-6535.2011.02.029 ZHANG Yi, LI Jungang, TONG Xiaohua, et al. Prediction of water lock in gas reservoirs based on neural network information fusion[J]. Special Oil & Gas Reservoirs, 2011, 18(2): 102–103, 110 doi: 10.3969/j.issn.1006-6535.2011.02.029
[15] PRADA A, CIVAN F. Modification of Darcy′s law for the threshold pressure gradient[J]. Journal of Petroleum Science and Engineering, 1999, 22(4): 237–240 doi: 10.1016/S0920-4105(98)00083-7
[16] DACY J M. Core tests for relative permeability of unconventional gas reservoirs[R]. SPE 135427, 2010.
[17] ZENG Baoquan, CHENG Linsong, HAO Fei. Experiment and mechanism analysis on threshold pressure gradient with different fluids[R]. SPE 140678, 2010.
[18] 游利军, 石玉江, 张海涛, 等. 致密砂岩气藏水相圈闭损害自然解除行为研究[J]. 天然气地球科学, 2013, 24(6): 1214–1219 http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201306015 YOU Lijun, SHI Yujiang, ZHANG Haitao, et al. Spontaneous removal behavior of water phase trapping damage in tight sandstone gas reservoirs[J]. Natural Gas Geoscience, 2013, 24(6): 1214–1219 http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201306015
[19] 朱华银, 徐轩, 安来志, 等. 致密气藏孔隙水赋存状态与流动性实验[J]. 石油学报, 2016, 37(2): 230–236 doi: 10.3969/j.issn.1001-8719.2016.02.002 ZHU Huayin, XU Xuan, AN Laizhi, et al. An experimental on occurrence and mobility of pore water in tight gas reservoirs[J]. Acta Petrolei Sinica, 2016, 37(2): 230–236 doi: 10.3969/j.issn.1001-8719.2016.02.002
[20] MO S Y, HE S L, LEI G, et al. Effect of the drawdown pressure on the relative permeability in tight gas: a theoretical and experimental study[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 264–271 doi: 10.1016/j.jngse.2015.03.034
[21] 李海波. 岩心核磁共振可动流体T2截止值实验研究[D]. 北京: 中国科学院渗流流体力学研究所, 2008: 20-24. LI Haibo. Core experimental study of NMR T2 cutoff value[D]. Beijing: Chinese Academy of Sciences, Institute of Porous Flow and Fluid Mechanics, 2008: 20-24.
-
期刊类型引用(8)
1. 王旱祥,任京文,于长录,车家琪,邓君宇,徐鸿志,刘延鑫,朱晓洋. 天然气水合物举升管气液分离过程数值模拟与方案优选. 石油钻采工艺. 2023(02): 203-210 . 百度学术
2. 王晓光,姜立芳,尹建国,刘荣波,朱绍东. 基于沉积法的海底天然气渗漏活动特征检测. 能源与环保. 2022(01): 196-201 . 百度学术
3. 王磊,杨进,李莅临,胡志强,柯珂,臧艳彬,孙挺. 深水含水合物地层钻井井口稳定性研究. 岩土工程学报. 2022(12): 2312-2318 . 百度学术
4. 王志刚,李小洋,张永彬,尹浩,胡晨,梁金强,黄伟. 海域非成岩天然气水合物储层改造方法分析. 钻探工程. 2021(06): 32-38 . 百度学术
5. 冯轩,翟亚若,王久星,韩金虎,陈映赫,马麟. 置换法联合压裂开采天然气水合物技术. 现代化工. 2021(12): 22-26 . 百度学术
6. 陈静. 浅谈海域天然气水合物开采方法及风险控制. 科技风. 2020(01): 109-110 . 百度学术
7. 李莅临,杨进,路保平,柯珂,王磊,陈柯锦. 深水水合物试采过程中地层沉降及井口稳定性研究. 石油钻探技术. 2020(05): 61-68 . 本站查看
8. 李庆超,程远方,邵长春. 允许适度坍塌的水合物储层最低钻井液密度. 断块油气田. 2019(05): 657-661 . 百度学术
其他类型引用(2)