Design and Field Application of a Micro-Coring PDC Bit
-
摘要:
为了解决普通PDC钻头形成的岩屑细碎、无法满足岩屑录井,而采用牙轮钻头进尺少、机械钻速低又存在掉牙轮风险的问题,设计了微心PDC钻头。介绍了微心PDC钻头整体结构设计和结构参数优化方法, 设计制造了小尺寸微心钻头,进行了室内取心试验和提速试验;结合临盘油田街403井和胜坨油田坨202井实钻地层的岩性特征,分别设计制造了ϕ215.9 mm微心PDC钻头,进行了现场试验。室内试验和现场试验结果均显示:该钻头获取的岩屑较大,大小与牙轮钻头产生的钻屑相当,能满足岩屑录井的要求;而且,钻头进尺和机械钻速与普通PDC钻头相当,与牙轮钻头相比有明显提高。研究结果表明,微心PDC钻头可以代替牙轮钻头在岩屑录井井段使用,并能达到提速提效的目的。
Abstract:During coring, the cuttings obtained by an ordinary PDC bit are broken into small bits and cannot meet the minimum necessary conditions for logging cuttings.Further, the cone bit has small footage, low ROP and there are high risks of cone breakage.In order to overcome these challenges, a micro-coring PDC bit was designed.This paper describes the overall structural design and also describes the best method for optimizing structural parameters for the micro-coring PDC bit.Aligning with the results of mechanical analysis, a small-size bit was designed and manufactured, and laboratory coring experiments and acceleration experiments were carried out.Using specifications developmed from the formation lithology from Well Jie 403 in Linpan Oilfield and Well Tuo 202 in Shengtuo Oilfield, a ϕ215.9 mm micro-coring PDC bit was designed and manufactured.The bit was then sent to the field where it was put into use in order to verify the design.Both the results of laboratory experiments and the field tests showed that the cuttings obtained by this bit were relatively large and the size was equivalent to that drilled by a cone bit, which could meet the requirements of cuttings logging.In addition, the bit footage and ROP were similar to that of ordinary PDC bit, and the efficiency was significantly improved compared to the cone bit.The results showed that the micro-core PDC bit could replace the cone bit in the interval for logging the cuttings, and could improve the efficiency due to its higher ROP.
-
-
[1] 田京燕.PDC钻头三维设计软件的开发[J].石油机械, 2009, 37(5):32-34. http://d.old.wanfangdata.com.cn/Periodical/syjx200905010 TIAN Jingyan.PDC bit 3D design software development[J].China Petroleum Machinery, 2009, 37(5):32-34. http://d.old.wanfangdata.com.cn/Periodical/syjx200905010
[2] AADNOY B S, LOOYEH R.钻井岩石力学[M].韩来聚, 王宗钢, 冯光通, 等译.东营: 中国石油大学出版社, 2013: 6-58. AADNOY B S, LOOYEH R.Petroleum rock mechanics drilling operations and well design[M].Translated by HAN Laiju, WANG Zonggang, FENG Guangtong, et al.Dongying: China of University Petroleum Press, 2013: 6-58.
[3] 刘竞, 高含, 陈光碧, 等.微取心PDC钻头试验及评价[J].钻采工艺, 2014, 37(3):34-35. doi: 10.3969/J.ISSN.1006-768X.2014.03.10 LIU Jing, GAO Han, CHEN Guangbi, et al.Test and evaluation of micro core PDC bit[J].Drilling & Production Technology, 2014, 37(3):34-35. doi: 10.3969/J.ISSN.1006-768X.2014.03.10
[4] 汪海阁, 王灵碧, 纪国栋, 等.国内外钻完井技术新进展[J].石油钻采工艺, 2013, 35(5):1-12. doi: 10.3969/j.issn.1000-7393.2013.05.001 WANG Haige, WANG Lingbi, JI Guodong, et al.Advances in well drilling and completion technologies for domestic and overseas[J].Oil Drilling & Production Technology, 2013, 35(5):1-12. doi: 10.3969/j.issn.1000-7393.2013.05.001
[5] 黄英勇, 李根生, 宋先知, 等.PDC钻头定向喷嘴井底流场数值模拟[J].石油钻探技术, 2011, 39(6):99-103. doi: 10.3969/j.issn.1001-0890.2011.06.023 HUANG Yingyong, LI Gensheng, SONG Xianzhi, et al.Numerical simulation of bottomhole flow field of PDC bit with orientation nozzle[J].Petroleum Drilling Techniques, 2011, 39(6):99-103. doi: 10.3969/j.issn.1001-0890.2011.06.023
[6] 徐玉超.定向井PDC钻头受力模型及优化设计研究[D].青岛: 中国石油大学(华东), 2008. XU Yuchao.Mechanical model and optimizing design of oriented PDC bit[D].Qingdao: China University of Petroleum (Huadong), 2008.
[7] DESCHAMPS B, DESMETTE S D J, DELWICHE R, et al.Drilling to the extreme: the micro-coring bit concept[R].SPE 115187, 2008.
-
期刊类型引用(51)
1. 李小江,王越洋,肖京男,魏浩光,杨睿月. 硅酸盐水泥石超高温干热环境热损伤规律. 钻井液与完井液. 2025(02): 247-254 . 百度学术
2. 方玮玮,虞斌,陈晨,凌卫平. 热管型地热系统气液分离器外部流场结构优化. 石油化工设备. 2024(01): 40-46 . 百度学术
3. 肖京男,李小江,周仕明,魏浩光,杨红歧. 干热岩超高温防衰退水泥浆体系及应用. 钻井液与完井液. 2024(01): 92-97 . 百度学术
4. 戴一凡,侯冰,廖志豪. 基于相场法的深层干热岩储层水力压裂模拟研究. 石油钻探技术. 2024(02): 229-235 . 本站查看
5. 张云,张哲妮,高亮,杨风良,刘现川. 兰州地热井K1井施工工艺. 中国井矿盐. 2024(05): 21-22+25 . 百度学术
6. 薛熠,张智豪,刘嘉,蔡承政,张志镇,高峰,时旭阳,张云. 高温加热-液氮冷冲击处理后花岗岩声发射演化特征及损伤本构模型. 岩土工程学报. 2024(09): 1849-1859 . 百度学术
7. 陈作,赵乐坤,卫然,刘星. 深层地热热储改造技术进展与发展建议. 石油钻探技术. 2024(06): 10-15 . 本站查看
8. 田玉栋,齐悦,张仟,耿晓光,杨永祥,刘洋. 油田地热新能源钻井技术经济性评价研究. 石油和化工设备. 2023(01): 5-7 . 百度学术
9. 郑臣,汪道兵,宇波,孙东亮,韩东旭. 基于CFD-DEM耦合的粗糙裂缝内暂堵剂运移规律研究. 工程热物理学报. 2023(02): 422-429 . 百度学术
10. 张云,高亮,田增霞,宋玺权,刘现川,赵岩. 唐山马头营干热岩M-2井钻井工艺. 中国地质调查. 2023(01): 118-124 . 百度学术
11. 杨春和,王磊,曾义金,郭印同,杨广国,刘奎. 考虑多因素的固井二界面胶结抗拉强度室内评价方法. 石油钻探技术. 2023(04): 48-54 . 本站查看
12. 荀杨,苏博,翟梁皓,刘华南,戚波,吴景华. 干热岩储层改造技术研究进展. 长春工程学院学报(自然科学版). 2023(03): 81-86 . 百度学术
13. 张云,高亮,刘现川,赵岩,王德,张建永. 唐山马头营干热岩M-1井钻井工艺技术. 地质与勘探. 2022(01): 176-186 . 百度学术
14. 刘伟吉,胡海,祝效华,罗云旭,陈梦秋. 围压条件下电脉冲破碎干热岩机理. 天然气工业. 2022(04): 117-129 . 百度学术
15. 余毅,马艺媛. 中国干热岩资源赋存类型与开发利用. 自然资源情报. 2022(05): 36-42 . 百度学术
16. 石雪峰,杜海峰,仲米剑. 鄂尔多斯盆地桥镇地区延长组长1段沉积相分析及其油气地质意义. 自然资源情报. 2022(05): 43-47+32 . 百度学术
17. 秦浩,汪道兵,邓雅军,韩东旭,宇波,孙东亮. 干热岩人工裂隙内暂堵剂运移规律研究. 工程热物理学报. 2022(09): 2397-2403 . 百度学术
18. 李根生,武晓光,宋先知,周仕明,李铭辉,朱海燕,孔彦龙,黄中伟. 干热岩地热资源开采技术现状与挑战. 石油科学通报. 2022(03): 343-364 . 百度学术
19. 刘肖,谭现锋,张丰,张茜,卜宪标,郑慧铭. 河北博野某地热系统现场阻垢试验及阻垢效果评价. 河北工程大学学报(自然科学版). 2022(03): 83-92 . 百度学术
20. 周健,曾义金,陈作,张保平,徐胜强. 青海共和盆地干热岩压裂裂缝测斜仪监测研究. 石油钻探技术. 2021(01): 88-92 . 本站查看
21. 宋先知,李嘉成,石宇,许富强,曾义金. 多分支井地热系统注采性能室内实验研究. 石油钻探技术. 2021(01): 81-87 . 本站查看
22. 徐胜强,张旭东,张保平,周健. 测斜仪监测技术在共和盆地干热岩井压裂中的应用研究. 钻探工程. 2021(02): 42-48 . 百度学术
23. 宇波,李庭宇,韩东旭,孙东亮,杨福胜,魏进家. 干热岩流动换热多尺度有限容积法. 天然气工业. 2021(03): 168-178 . 百度学术
24. 罗宏保,李俊萍,吴金生. 高温硬岩空气潜孔锤钻头设计. 钻探工程. 2021(04): 60-65 . 百度学术
25. CHEN Zuo,XU Guoqing,ZHOU Jian,LIU Jiankun. Fracture Network Volume Fracturing Technology in High-temperature Hard Formation of Hot Dry Rock. Acta Geologica Sinica(English Edition). 2021(06): 1828-1834 . 必应学术
26. 蒋恕,王帅,祁士华,程万强,旷健,黄学莲,田峰,肖志才. 基于大数据分析的地热勘探潜力区预测方法的新进展. 高校地质学报. 2020(01): 111-120 . 百度学术
27. 谢文苹,路睿,张盛生,朱进守,于漂罗,张珊珊. 青海共和盆地干热岩勘查进展及开发技术探讨. 石油钻探技术. 2020(03): 77-84 . 本站查看
28. 樊继强. 井底交变流场提速工具的研制及特性测试. 石油机械. 2020(06): 37-42 . 百度学术
29. 梁海军,郭啸峰,高涛,卜宪标,李华山,王令宝. 河北博野某地热井结垢位置预测及影响因素分析. 石油钻探技术. 2020(05): 105-110 . 本站查看
30. 王恒,王磊,张东清,张进双. 干热岩钻井钻具磨损及防磨技术研究. 石油钻探技术. 2020(06): 47-53 . 本站查看
31. 陈作,张保平,周健,刘红磊,周林波,吴春方. 干热岩热储体积改造技术研究与试验. 石油钻探技术. 2020(06): 82-87 . 本站查看
32. 黄中伟,武晓光,李冉,张世昆,杨睿月. 高压液氮射流提高深井钻速机理. 石油勘探与开发. 2019(04): 768-775 . 百度学术
33. 肖鹏,闫飞飞,窦斌,田红,刘恒伟,朱振南. 增强型地热系统水平井平行多裂隙换热过程数值模拟. 可再生能源. 2019(07): 1091-1099 . 百度学术
34. 杨冶,姜志海,岳建华,刘树才. 干热岩勘探过程中地球物理方法技术应用探讨. 地球物理学进展. 2019(04): 1556-1567 . 百度学术
35. HUANG Zhongwei,WU Xiaoguang,LI Ran,ZHANG Shikun,YANG Ruiyue. Mechanism of drilling rate improvement using high-pressure liquid nitrogen jet. Petroleum Exploration and Development. 2019(04): 810-818 . 必应学术
36. 王志刚,胡志兴,李宽,李鑫淼. 干热岩钻完井的挑战及技术展望. 科技导报. 2019(19): 58-65 . 百度学术
37. 叶顺友,杨灿,王海斌,崔广亮,赵峰,董洪铎. 海南福山凹陷花东1R井干热岩钻井关键技术. 石油钻探技术. 2019(04): 10-16 . 本站查看
38. 陈作,许国庆,蒋漫旗. 国内外干热岩压裂技术现状及发展建议. 石油钻探技术. 2019(06): 1-8 . 本站查看
39. 黄雪琴,孟庆昆. 液氮应用于干热岩钻探的可行性探讨. 探矿工程(岩土钻掘工程). 2018(02): 22-25 . 百度学术
40. 郑宇轩,单文军,赵长亮,蒋睿,李艳宁. 青海共和干热岩GR1井钻井工艺技术. 地质与勘探. 2018(05): 1038-1045 . 百度学术
41. 侯宝东,刘伟,韩利宝,刘安兵. 300℃定向钻井系统研究与应用. 石油机械. 2018(11): 1-9 . 百度学术
42. 梁文利. 干热岩钻井液技术新进展. 钻井液与完井液. 2018(04): 7-13 . 百度学术
43. 荆铁亚,赵文韬,郜时旺,王金意,张健. 干热岩地热开发实践及技术可行性研究. 中外能源. 2018(11): 17-22 . 百度学术
44. 杨立中,孙占学,刘金辉,王安东,万建军. 中国典型干热岩潜力区的地热深井部署. 地质与勘探. 2017(02): 355-360 . 百度学术
45. 张所邦,宋鸿,陈兵,韩朝. 中国干热岩开发与钻井关键技术. 资源环境与工程. 2017(02): 202-207 . 百度学术
46. 卢劲锴,陈良玺. 未来的清洁能源——干热岩型地热能. 科技展望. 2017(32): 55+57 . 百度学术
47. 王培义,马鹏鹏,张贤印,杨卫. 中低温地热井钻井完井工艺技术研究与实践. 石油钻探技术. 2017(04): 27-32 . 本站查看
48. 唐志伟,米倡华,张学峰,刘爱洁. 增强型地热系统热固流耦合数值模拟与分析. 北京工业大学学报. 2016(10): 1560-1564 . 百度学术
49. 光新军,王敏生. 高温地热高效开发钻井关键技术. 地质与勘探. 2016(04): 718-724 . 百度学术
50. 张颖. 钻井工程服务在地热资源开发中面临的机遇与挑战. 中国石油和化工. 2016(04): 64+67 . 百度学术
51. 田兰兰. 我国干热岩赋存及其热能开发技术初探. 中国井矿盐. 2016(04): 20-23 . 百度学术
其他类型引用(41)