基于真实裂缝试验装置的液液重力置换试验研究

侯绪田, 赵向阳, 孟英峰, 杨顺辉, 李皋, 刘文臣

侯绪田, 赵向阳, 孟英峰, 杨顺辉, 李皋, 刘文臣. 基于真实裂缝试验装置的液液重力置换试验研究[J]. 石油钻探技术, 2018, 46(1): 30-36. DOI: 10.11911/syztjs.2018036
引用本文: 侯绪田, 赵向阳, 孟英峰, 杨顺辉, 李皋, 刘文臣. 基于真实裂缝试验装置的液液重力置换试验研究[J]. 石油钻探技术, 2018, 46(1): 30-36. DOI: 10.11911/syztjs.2018036
HOU Xutian, ZHAO Xiangyang, MENG Yingfeng, YANG Shunhui, LI Gao, LIU Wenchen. Liquid-Liquid Gravity Displacement Test Based on Experimental Apparatus for Real Fractures[J]. Petroleum Drilling Techniques, 2018, 46(1): 30-36. DOI: 10.11911/syztjs.2018036
Citation: HOU Xutian, ZHAO Xiangyang, MENG Yingfeng, YANG Shunhui, LI Gao, LIU Wenchen. Liquid-Liquid Gravity Displacement Test Based on Experimental Apparatus for Real Fractures[J]. Petroleum Drilling Techniques, 2018, 46(1): 30-36. DOI: 10.11911/syztjs.2018036

基于真实裂缝试验装置的液液重力置换试验研究

基金项目: 

中国石化科技攻关项目"伊朗雅达油田活跃沥青侵害防控钻井技术研究"(编号:P16014)资助。

详细信息
    作者简介:

    侯绪田(1964-),男,河南杞县人,1984年毕业于华东石油学院开发系钻井工程专业,教授级高级工程师,主要从事钻井工程领域的研究工作。

  • 中图分类号: TE28

Liquid-Liquid Gravity Displacement Test Based on Experimental Apparatus for Real Fractures

  • 摘要: 为了解裂缝性地层发生液液置换过程中流体在裂缝中的真实流动形态,通过扫描现场实际露头裂缝,构建了真实的裂缝空间,根据裂缝性地层液液重力置换机理,利用可视化井筒-地层耦合流动试验装置进行了钻井液与模拟地层流体的可视化重力置换试验,分析了裂缝宽度、井口回压、钻井液密度、钻井液黏度和地层流体黏度对定容性地层液液置换量的影响规律,并根据量纲分析理论回归了置换量与各影响因素的关系。结果表明:裂缝宽度、井口回压和钻井液密度增大,置换速率和置换量均增大;钻井液和地层流体黏度升高,置换速率和置换量均减小;循环当量密度相同时,采用低密度钻井液加回压的方式,置换量较小。这表明,裂缝两端的压差是发生液液置换的主要原因,而钻井液与地层流体的密度差与黏度差是导致裂缝两端产生压差的主要因素。
    Abstract: In order to understand the actual flow pattern of fluids inside fractures during liquid-liquid displacement,visualized displacement tests for drilling fluid and simulated formation fluid were conducted with a visualized apparatus for wellbore-formation coupled flow based on the liquid-liquid gravity displacement mechanism of fractured formations.This apparatus could simulate real fracture space by reference to fractures scanned in field outcrops.The affecting rules of fracture width,wellhead back pressure,density of drilling fluid,viscosity of drilling fluid and viscosity of formation fluid on the liquid-liquid displacement amount in volume-constant formations were analyzed,and further the relationships among the displacement amount and all influential factors were regressed on the basis of the dimension analysis theory.The results indicated that with the increase of fracture width,wellhead back pressure and density of drilling fluid,the displacement rate and amount would be increased;while with the increase of viscosity of drilling fluid and formation fluid,the displacement rate and amount would be reduced;under the same equivalent circulating density,drilling fluids with lower density and back pressure could produce less displacement amount.These results suggest that the pressure difference between the two ends of fractures is the key reason for the displacement,which can be traced to the differences between drilling fluid and formation fluid in density and viscosity.The research results can provide guidance for the control of liquid-liquid gravity displacement in fractured formations.
  • [1] 马宗金.总结经验教训提高天然气井钻井井控能力[J].钻采工艺,2004,27(4):1-5. MA Zongjin.Summing up experience to improve well control ability of natural gas well[J].Drilling Production Technology,2004,27(4):1-5.
    [2] 张志.裂缝性气藏重力置换溢流规律研究[D].成都:西南石油大学,2008. ZHANG Zhi.Research on the rule of gravity displacement in fracture gas reservoir[D].Chengdu:Southwest Petroleum University,2008.
    [3] 舒刚,孟英峰,李皋,等.重力置换式漏喷同存机理研究[J].石油钻探技术,2011,39(1):6-11. SHU Gang,MENG Yingfeng,LI Gao,et al.Mechanism of mud loss and well kick due to gravity displacement[J].Petroleum Drilling Techniques,2011,39(1):6-11.
    [4] 贾红军.钻遇裂缝性地层溢漏同存机理研究[D].成都:西南石油大学,2013. JIA Hongjun.Mechanism study on well kick accompanied with lost circulation during drilling fractured formation[D].Chengdu:Southwest Petroleum University,2013.
    [5] 赵向阳,孟英峰,侯绪田,等.沥青质稠油与钻井液重力置换规律与控制技术[J].石油钻采工艺,2016,38(5):622-627. ZHAO Xiangyang,MENG Yingfeng,HOU Xutian,et al.Pattern and control of gravity displacement between asphaltic heavy oil and drilling fluid[J].Oil Drilling Production Technology,2016,38(5):622-627.
    [6] 路保平,侯绪田,邢树宾.伊朗雅达油田沥青层置换机制与压力波动分析[J].中国石油大学学报(自然科学版),2017,41(6):88-93. LU Baoping,HOU Xutian,XING Shubin.Asphalt displacement mechanism and pore pressure fluctuation in Yadavaran Oilfield,Iran[J].Journal of China University of Petroleum(Edition of Natural Sciences),2017,41(6):88-93.
    [7]

    CHANG L,GAO Y.A simple numerical method for contact analysis of rough surfaces[J].Journal of Tribology-Transactions of the ASME,1999,121(3):425-432.

    [8]

    LOMIZE G M.Flow in fracturedrock(in Russian)[M].Moscow:Gosemergoizdat,1951:127-129.

    [9]

    LOUIS C,MAINI Y N.Determination of in-situ hydraulic parameters in jointedrock[J].International Society of Rock Mechanics Proceedings,1970,1:1-19.

    [10]

    DYKE C G,WU B,MILTON-TAYLER D.Advances incharacterising natural fracture permeability from mud log data[J].SPE Formation Evaluation,1995,10(3):160-166.

    [11]

    MAJIDI R,MISKA S Z,YU M,et al.Quantitative analysis of mud losses in naturally fractured reservoirs:the effect ofrheology[J].SPE Drilling Completion,2010,25(4):509-517.

  • 期刊类型引用(8)

    1. 陶振宇,樊洪海,罗胜,刘玉含,邓嵩,叶宇光. 基于井筒-地层定压实验的重力置换窗口研究. 科学技术与工程. 2024(06): 2330-2338 . 百度学术
    2. 赵鹏,马永乾,樊洪海,段光辉,陶振宇. 油基钻井液与地层流体重力置换实验研究. 内蒙古石油化工. 2024(08): 96-102 . 百度学术
    3. 唐贵,邓虎,舒梅. 地层—井筒耦合条件下的压力控制实验装置研究. 钻采工艺. 2022(04): 44-49 . 百度学术
    4. 霍宏博,李金蔓,张磊,岳明,刘海龙. 海洋窄压力窗口钻井技术. 石油工业技术监督. 2021(04): 40-44 . 百度学术
    5. 乐宏,吴鹏程,梁婕,钟成旭,张震,李郑涛,李红涛. 裂缝发育页岩地层水平井钻井气液重力置换规律. 天然气工业. 2021(12): 90-98 . 百度学术
    6. 王怡. 页岩气藏裂缝区地层孔隙压力准确求取方法. 石油钻探技术. 2020(03): 29-34 . 本站查看
    7. 刘衍前. 涪陵页岩气田加密井钻井关键技术. 石油钻探技术. 2020(05): 21-26 . 本站查看
    8. 周朝,吴晓东,张同义,赵旭. 排液采气涡流工具结构参数优化实验研究. 石油钻探技术. 2018(06): 105-110 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  4399
  • HTML全文浏览量:  87
  • PDF下载量:  3694
  • 被引次数: 9
出版历程
  • 收稿日期:  2017-11-09
  • 修回日期:  2018-01-11
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回