川南深层页岩各向异性特征及对破裂压力的影响

洪国斌, 陈勉, 卢运虎, 金衍

洪国斌, 陈勉, 卢运虎, 金衍. 川南深层页岩各向异性特征及对破裂压力的影响[J]. 石油钻探技术, 2018, 46(3): 78-85. DOI: 10.11911/syztjs.2018022
引用本文: 洪国斌, 陈勉, 卢运虎, 金衍. 川南深层页岩各向异性特征及对破裂压力的影响[J]. 石油钻探技术, 2018, 46(3): 78-85. DOI: 10.11911/syztjs.2018022
HONG Guobin, CHEN Mian, LU Yunhu, JIN Yan. Study on the Anisotropy Characteristics of Deep Shale in the Southern Sichuan Basin and Their Impacts on Fracturing Pressure[J]. Petroleum Drilling Techniques, 2018, 46(3): 78-85. DOI: 10.11911/syztjs.2018022
Citation: HONG Guobin, CHEN Mian, LU Yunhu, JIN Yan. Study on the Anisotropy Characteristics of Deep Shale in the Southern Sichuan Basin and Their Impacts on Fracturing Pressure[J]. Petroleum Drilling Techniques, 2018, 46(3): 78-85. DOI: 10.11911/syztjs.2018022

川南深层页岩各向异性特征及对破裂压力的影响

基金项目: 

国家自然科学基金重大项目"页岩油气高效开发基础理论研究"(编号:51490650)和"页岩非线性工程地质力学特征与预测理论"(编号:51490651)部分研究内容。

详细信息
    作者简介:

    洪国斌(1993-),男,福建泉州人,2016年毕业于中国石油大学(华东)石油工程专业,在读硕士研究生,主要从事油气井岩石力学与工程技术的研究。

  • 中图分类号: TE357.1+1

Study on the Anisotropy Characteristics of Deep Shale in the Southern Sichuan Basin and Their Impacts on Fracturing Pressure

  • 摘要: 川南深层页岩地层地应力非均匀性强,钻进过程中漏失严重,破裂压力预测困难,在进行深层页岩微观组构观测和宏观力学试验的基础上,测试了深层页岩的各向异性特征,考虑各向异性特征建立了井周应力模型,结合深层页岩本体拉张破坏、裂缝剪切滑移破坏和裂缝张性破坏模式,建立了深层页岩地层破裂压力预测模型,分析了各向异性特征对地层破裂压力的影响规律。分析结果表明:页岩各向异性越强,地应力差异越明显,大斜度井裂缝越易滑移;较高的粘聚力可有效抑制裂缝弱面的错动能力;裂缝倾角大小主导着裂缝张性漏失。预测模型在川南彭水区块页岩气井地层破裂压力预测的结果表明,地应力差异较弹性差异对深层页岩破裂压力的影响更为显著,岩石粘聚力是诱导裂缝剪切滑移漏失的主因,相对裂缝倾角是诱导裂缝张性破坏的主因。裂缝发育的页岩地层以裂缝破坏为主,破裂压力受岩石粘聚力、裂缝倾角和地应力的影响显著,在预测破裂压力时应综合3种破裂模式判断破裂方式和预测破裂压力。
    Abstract: Deep shale formations in Southern Sichuan Basin show significant stratigraphic anisotropy and strong in-situ stress heterogeneity,which result in serious fluid loss during drilling and difficulty in fracturing pressure prediction.On the basis of microstructure observations and mechanical experiments on deep shale,the anisotropy characteristics of deep shale were systematically studied and a circumferential stress model was built for a wellbore.A deep shale formation fracturing pressure prediction model was established in combination with the tensile failure of deep shale rock body,shear slip failure and tensile failure of fracture to analyze the influence of anisotropy characteristics on the borehole fracturing pressure.The analysis results showed that stronger shale anisotropy and higher in-situ stress difference would lead to easier fracture slippage in highly deviated wells;higher cohesion would effectively restrain the dislocation of fracture weak planes,and fracture inclination would dominate the tensile leakage of fracture.The prediction model was adopted to predict the fracturing pressure of shale wells in the Pengshui Block of the Southern Sichuan Basin.Results showed that the impact of in-situ stress difference is more significant than that of elastic difference,and the cohesion of rock is the main factor in inducing shear slip failure,while fracture inclination is the main factor in leading to the tensile failure of the fracture.Fracture developed shale formations are dominated by fracture damage,and fracturing pressure is significantly affected by rock cohesion,fracture inclination and in-situ stresses.In practical fracturing pressure prediction,three types of fracture modes should be used integrally to determine the fracture mode and fracturing pressure.
  • [1] 杨恒林,乔磊,田中兰.页岩气储层工程地质力学一体化技术进展与探讨[J].石油钻探技术,2017,45(2):25-31. YANG Henglin,QIAO Lei,TIAN Zhonglan.Advance in shale gas reservoir engineering and geomechanics intergration technology and relevant discussions[J].Petroleum Drilling Techniques,2017,45(2):25-31.
    [2]

    BARREE R D,MISKIMINS J L.Calculation and implications of breakdown pressures in directional wellbore stimulation[R].SPE 173356,2015.

    [3] 陈勉,陈治喜,黄荣樽.大斜度井水压裂缝起裂研究[J].石油大学学报(自然科学版),1995,19(2):30-35. CHEN Mian,CHEN Zhixi,HUANG Rongzun.Hydraulicfracturing of highly deviated wells[J].Journal of the University of Petroleum,China(Edition of Natural Science),1995,19(2):30-35.
    [4] 金衍,陈勉,张旭东.天然裂缝地层斜井水力裂缝起裂压力模型研究[J].石油学报,2006,27(5):124-126. JIN Yan,CHEN Mian,ZHANG Xudong.Initiation pressure models for hydraulic fracturing of vertical wells in naturally fractured formation[J].Acta Petrolei Sinica,2006,27(5):124-126.
    [5] 赵金洲,任岚,胡永全,等.裂缝性地层射孔井破裂压力计算模型[J].石油学报,2012,33(5):841-845. ZHAO Jinzhou,REN Lan,HU Yongquan,et al.A calculation model of breakdown pressure for perforated wells in fractured formations[J].Acta Petrolei Sinica,2012,33(5):841-845.
    [6]

    KANFAR M F,CHEN Z,RAHMAN S S.Effect of material anisotropy on time-dependent wellbore stability[J].International Journal of Rock Mechanics and Mining Sciences,2015,78:36-45.

    [7] 林永学,高书阳,曾义金.龙马溪组页岩强度评价与分析[J].石油钻探技术,2015,43(5):20-25. LIN Yongxue,GAO Shuyang,ZENG Yijin.Evaluation and analysis of rock strength for the Longmaxi Shale[J].Petroleum Drilling Techniques,2015,43(5):20-25.
    [8] 崔云海,刘厚彬,杨海平,等.焦石坝页岩气储层水平井井壁失稳机理[J].石油钻采工艺,2016,38(5):545-552. CUI Yunhai,LIU Houbin,YANG Haiping,et al.Mechanisms of sidewall stability loss in horizontal wells drilled for shale gas development in Jiaoshiba Block[J].Oil Drilling Production Technology,2016,38(5):545-552.
    [9] 于雷,张敬辉,刘宝锋,等.微裂缝发育泥页岩地层井壁稳定技术研究与应用[J].石油钻探技术,2017,45(3):27-31. YU Lei,ZHANG Jinghui,LIU Baofeng,et al.Study and application of borehole stabilization technology in shale strata containing micro-fractures[J].Petroleum Drilling Techniques,2017,45(3):27-31.
    [10]

    MA Tianshou,ZHANG Qianbing,CHEN Ping,et al.Fracture pressure model for inclined wells in layered formations with anisotropic rock strengths[J].Journal of Petroleum Science and Engineering,2017,149:393-408.

    [11]

    SUAREZ-RIVERA R,GREEN S J,MCLENNAN J,et al.Effect of layered heterogeneity on fracture initiation in tight gas shales[R].SPE 103327,2006.

    [12]

    SCHMITT D R,CURRIE C A,ZHANG Lei.Crustal stress determination from boreholes and rock cores:fundamentalprinciples[J].Tectonophysics.2012,580:1-26.

    [13]

    LI Yumei,LIU Gonghui,LI Jun,et al.Improving fracture initiation predictions of a horizontal wellbore in laminated anisotropy shales[J].Journal of Natural Gas Science and Engineering.2015,24:390-399.

    [14]

    LEKHNITSKⅡ S G.Theory of elasticity of an anisotropic elastic body[M].FERN P,translated.San Francisco:Holden-Day Inc,1963.

    [15]

    VAHID S,AHMAD G.Hydraulic fracture initiation from a wellbore in transversely isotropic rock[R].ARMA-11-201,2011.

    [16] 陈勉,金衍,张广清.石油工程岩石力学[M]:北京:科学出版社,2008:169-173. CHEN Mian,JIN Yan,ZHANG Guangqing.Petroleum engineering rock mechanics[M].Beijing:Science Press,2008:169-173.
  • 期刊类型引用(15)

    1. 李博,郑瑞强,齐悦,张振华,纪博,李相勇,田玉栋. 大庆深层水平井钻井关键技术. 石油机械. 2025(01): 74-79 . 百度学术
    2. 陈炼,魏小虎,曹强,周岩,杨迎新,胡川,赵志杰,伍彬. 凸棱非平面聚晶金刚石齿的破岩机理及在含砾地层中的应用. 中国机械工程. 2024(02): 371-379 . 百度学术
    3. 程伟,幸雪松,楼一珊,朱亮,尹彪. 三棱形PDC齿破岩特性数值模拟研究. 石油机械. 2024(11): 21-28 . 百度学术
    4. 王峰,钟耀敬,刘书杰,李瑞玲. 塔里木果勒西区块火成岩优快钻井技术. 西部探矿工程. 2023(02): 28-30+34 . 百度学术
    5. 刘和兴,罗云旭,刘伟吉,马传华,吴艳辉,祝效华,柳亚亚. 异形PDC齿切削破碎非均质花岗岩机理研究. 石油机械. 2022(04): 22-31 . 百度学术
    6. 车卫勤,许雅潇,岳小同,罗忠保,姜维,杜晶,赵小勇. 渝西大足区块超深超长页岩气水平井钻井技术. 石油钻采工艺. 2022(04): 408-414 . 百度学术
    7. 靳大松,霍如军,张家振,阮大勇,刘立超,李志敏,徐海龙. 塔里木油田富源区块钻井提速关键技术. 钻采工艺. 2021(01): 125-128 . 百度学术
    8. 胡思成,管志川,路保平,梁德阳,呼怀刚,闫炎,陶兴华. 锥形齿旋冲及扭冲的破岩过程与破岩效率分析. 石油钻探技术. 2021(03): 87-93 . 本站查看
    9. 刘建华,令文学,王恒. 非平面三棱形PDC齿破岩机理研究与现场试验. 石油钻探技术. 2021(05): 46-50 . 本站查看
    10. 王学龙,何选蓬,刘先锋,程天辉,李瑞亮,富强. 塔里木克深9气田复杂超深井钻井关键技术. 石油钻探技术. 2020(01): 15-20 . 本站查看
    11. 李宁,周波,文亮,韩雨恬,王天博,卢宗武. 塔里木油田库车山前砾石层提速技术研究. 钻采工艺. 2020(02): 143-146 . 百度学术
    12. 袁国栋,王鸿远,陈宗琦,母亚军,席宝滨. 塔里木盆地满深1井超深井钻井关键技术. 石油钻探技术. 2020(04): 21-27 . 本站查看
    13. 张茂林,罗科海,王青. 准噶尔盆地东部深层火成岩钻井提速技术应用. 西部探矿工程. 2020(09): 104-106+110 . 百度学术
    14. 刘忠,侯辉辉,胡伟. 基于预破碎的岩石切削试验及分析. 石油机械. 2019(12): 38-43+57 . 百度学术
    15. 杨博仲,姚建林,沈欣宇. 新型抗扭转冲击结构锥形齿PDC钻头的研发与应用. 钻采工艺. 2018(05): 12-15+7-8 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  4895
  • HTML全文浏览量:  88
  • PDF下载量:  7539
  • 被引次数: 21
出版历程
  • 收稿日期:  2017-09-07
  • 修回日期:  2018-01-12
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回