基于阿基米德双螺旋线原理的水力喷射压裂技术

仝少凯, 高德利

仝少凯, 高德利. 基于阿基米德双螺旋线原理的水力喷射压裂技术[J]. 石油钻探技术, 2018, 46(1): 90-96. DOI: 10.11911/syztjs.2018013
引用本文: 仝少凯, 高德利. 基于阿基米德双螺旋线原理的水力喷射压裂技术[J]. 石油钻探技术, 2018, 46(1): 90-96. DOI: 10.11911/syztjs.2018013
TONG Shaokai, GAO Deli. Hydraulic Jet Fracturing Technology Based on Archimedes Spiral Theory[J]. Petroleum Drilling Techniques, 2018, 46(1): 90-96. DOI: 10.11911/syztjs.2018013
Citation: TONG Shaokai, GAO Deli. Hydraulic Jet Fracturing Technology Based on Archimedes Spiral Theory[J]. Petroleum Drilling Techniques, 2018, 46(1): 90-96. DOI: 10.11911/syztjs.2018013

基于阿基米德双螺旋线原理的水力喷射压裂技术

基金项目: 

国家自然科学基金创新研究群体项目"复杂油气井钻井与完井基础研究"(编号:51521063)、国家重点研发计划课题"钻井工艺及井筒工作液关键技术研究"(编号:2016YFC0303303)、国家科技重大专项"复杂结构井、从式井设计与控制新技术"(编号:2017ZX05009-003)资助。

详细信息
    作者简介:

    仝少凯(1987-),男,陕西岐山人,2011年毕业于西安石油大学机械设计制造及其自动化专业,2014年获西安石油大学机械设计及理论专业硕士学位,中国石油大学(北京)油气井工程专业在读博士研究生,主要从事油气井力学与控制工程研究。

  • 中图分类号: TE357.1

Hydraulic Jet Fracturing Technology Based on Archimedes Spiral Theory

  • 摘要: 针对水平井多级压裂双簇水力喷射效果不佳、上下游喷射器冲蚀不均匀和水平井筒内携砂流体中砂粒易沉降等问题,研究了基于阿基米德双螺旋线原理的水力喷射压裂技术。根据阿基米德双螺旋线原理,设计了双螺旋水力喷射压裂管柱及喷射器,并采用可视化试验方法对双螺旋特性进行了室内携砂评价试验;根据牛顿第二定律建立了水力喷射压裂工况下等径直管和双螺旋管柱内携砂流体中砂粒运移的动力学方程,得出了等径直管和双螺旋管柱内砂粒的运动速度计算模型。研究得出,双螺旋水力喷射压裂管柱及喷射器能起到螺旋旋流作用,均衡双簇水力喷射压裂效果和降低上、下游水力喷射器冲蚀的非均匀性;等径直管内砂粒的运动规律符合恒定加速度运动方程,双螺旋管内砂粒的运动规律符合变加速度运动方程。研究结果表明,采用双螺旋结构水力喷射压裂管柱及喷射器是可行的,在均衡多级水力喷射压裂效果和提高水平井筒内携砂流体携砂能力方面具有显著作用。
    Abstract: The multi-stage double-cluster hydraulic jet often encounters problems such as that of relative ineffectiveness,uneven erosion between the upstream and downstream by the injector,and sanding problems caused by the easy settlement of sands.To overcome these challenges,the theory of Archimedes double helix was utilized and integrated to a mathematical model of hydro jet fracturing,which provides the basis in the design of the double-helix hydraulic fracturing tubing string and injector.Then visualizations of the sand-carrying evaluation experiments were performed to evaluate the double-helix characteristics.In addition,kinetic equations of sand migration in sand-carrying fluid through straight pipes and double-helix pipes with the same diameter under hydraulic fracturing conditions were obtained based on Newton’s second law,then transformed into the calculation models of the kinetic velocity of sands.As indicated in the research,the double-helix hydraulic fracturing pipe strings and injector can generate rotational flow,which help to balance double-helix hydraulic fracturing effects,and reduce erosion unevenness between the upstream and the downstream.The movement of sands can be described in a model by the accelerated movement equation with a constant accelerated velocity and varied accelerated velocity inside straight pipes and double-helix pipes,respectively.The research demonstrated that the double-helix hydraulic fracturing pipe strings and injector can function well,which are feasible evidently in balancing the multi-stage hydraulic fracturing effects and improving sand-carrying capacity of fluid along horizontal wellbores.
  • [1]

    HALS K M D,BERRE I.Interaction between injection points during hydraulic fracturing[J].Water Resources Research,2012,48(11):484-494.

    [2] 田守嶒,李根生,黄中伟,等.水力喷射压裂机理与技术研究进展[J].石油钻采工艺,2008,30(1):58-62. TIAN Shouceng,LI Gensheng,HUANG Zhongwei,et al.Research on hydraulijet fracturing mechanisms and technologies[J].Oil Drilling Production Technology,2008,30(1):58-62.
    [3] 牛继磊,李根生,宋剑,等.水力喷砂射孔参数实验研究[J].石油钻探技术,2003,31(2):14-16. NIU Jilei,LI Gensheng,SONG Jian,et al.An experimental study on abrasive water jet perforation parameters[J].Petroleum Drilling Techniques,2003,31(2):14-16.
    [4] 成一,袁飞,王艳芬,等.水平井水力喷射压裂关键参数优化研究[J].石油地质与工程,2013,27(5):115-117. CHENG Yi,YUAN Fei,WANG Yanfen,et al.Research on key parameters of hydraulic jet fracturing in horizontal well[J].Petroleum Geology and Engineering,2013,27(5):115-117.
    [5] 李根生,牛继磊,刘泽凯,等.水力喷砂射孔机理实验研究[J].石油大学学报(自然科学版),2002,26(2):31-34. LI Gensheng,NIU Jilei,LIU Zekai,et al.Experimental study on mechanisms of hydraulic sand blasting perforation for improvement of oil production[J].Journal of the University of Petroleum,China(Edition of Natural Science),2002,26(2):31-34.
    [6]

    RUBINSTEIN J L,MAHANI A B.Myths and facts on wastewater injection,hydraulic fracturing,enhanced oil recovery,and induced seismicity[J].Seismological Research Letters,2015,86(4):1060-1067.

    [7] 范薇,胥云,王振铎,等.井下水力喷砂压裂工具典型结构及应用[J].石油钻探技术,2009,37(6):74-77. FAN Wei,XU Yun,WANG Zhenduo,et al.Typical structure and application of downhole sand jet fracturing tools[J].Petroleum Drilling Techniques,2009,37(6):74-77.
    [8]

    EAST L E,GRIESER W,MCDANIEL B W,et al.Successful application of hydrajet fracturing on horizontal wells completed in a thick shale reservoir[R].SPE 91435,2004.

    [9] 王步娥,舒晓晖,尚旭兰,等.水力喷射射孔技术研究与应用[J].石油钻探技术,2005,33(3):51-54. WANG Bu’e,SHU Xiaohui,SHANG Xulan,et al.The study and application of the water-jet perforation technique[J].Petroleum Drilling Techniques,2005,33(3):51-54.
    [10] 田守嶒,陈立强,盛茂,等.水力喷射分段压裂裂缝起裂模型研究[J].石油钻探技术,2015,43(5):31-36. TIAN Shouceng,CHEN Liqiang,SHENG Mao,et al.Modeling of fracture initiation for staged hydraulic jetting fracturing[J].Petroleum Drilling Techniques,2015,43(5):31-36.
    [11] 曲海,李根生,刘营.拖动式水力喷射分段压裂工艺在筛管水平井完井中的应用[J].石油钻探技术,2012,40(3):83-86. QU Hai,LI Gensheng,LIU Ying.The application of dragged multistage hydrojet-fracturing in horizontal well with screen pipe completion[J].Petroleum Drilling Techniques,2012,40(3):83-86.
    [12] 张然,李根生,杨林,等.页岩气增产技术现状及前景展望[J].石油机械,2011,39(增刊1):117-120. ZHAN Ran,LI Gensheng,YANG Lin,et al.Current situation and prospect of shale gas production increasing technology[J].China Petroleum Machinery,2011,39(supplement 1):117-120.
    [13] 徐芝纶.弹性力学(上册)[M].北京:人民教育出版社,1979:100-103. XU Zhilun.Elasticity (Ⅰ)[M].Beijing:The People’s Education Press,1979:100-103.
    [14] 刘鸿文.材料力学(Ⅱ)[M].2版.北京:高等教育出版社,2004:147-158. LIU Hongwen.Mechanics of materials (Ⅱ)[M].2nd ed.Beijing:Higher Education Press,2004:147-158.
    [15]

    BOKANE A,JAIN S,DESHPANDE Y,et al.Computational fluid dynamics (CFD) study and investigation of proppant transport and distribution in multistage fractured horizontal wells[R].SPE 165952,2013.

    [16]

    ZHANG Yongli,MCLAURY B S,SHIRAZI S A.Improvements of particle near-wall velocity and erosion predictions using a commercial CFD code[J].Journal of Fluids Engineering,2009,131(3):1-9.

    [17]

    DANESHY A A.Uneven distribution of proppants in perf clusters[J].World Oil,2011,232(4):75-76.

  • 期刊类型引用(10)

    1. 姚梦麟,陶云贺,贺洪举,侯克均,刘海军,熊宇,张冲. 致密砂岩碎屑颗粒粒度定量表征及对产能的指示意义. 地质科技通报. 2025(02): 214-223 . 百度学术
    2. 原建伟,刘美佳,李超,吴春新,马栋. 窄河道油藏水平井边界校正系数研究. 石油钻探技术. 2023(01): 86-90 . 本站查看
    3. 唐晓敏,殷雪松,吕亚娟,宋延杰,陈学洋,易俊. 基于孔隙结构储层分类的中低孔特低渗储层渗透率确定——以B区块S油层为例. 地球物理学进展. 2023(01): 271-284 . 百度学术
    4. 苏静,杨璐,邵广辉,林茂山,张艳丽,胡旋,董旭龙. 玛湖凹陷砂砾岩储层分类与产能预测方法研究. 长江大学学报(自然科学版). 2023(06): 30-40 . 百度学术
    5. 魏锋,陈现,王迪. 东海X气田基于测井参数的渗透率及产能预测方法研究. 海洋石油. 2023(04): 83-86+95 . 百度学术
    6. 殷洪川,胥良君,吕泽宇,庞进,唐雯,陈渝页. 页岩气井临界出砂产量预测方法. 特种油气藏. 2023(06): 135-140 . 百度学术
    7. 刘君毅,冯进,管耀,肖张波,王清辉,刘伟男. 基于改进电成像孔隙度谱的海洋低孔低渗砂岩渗透率评价方法. 测井技术. 2023(06): 746-752 . 百度学术
    8. 王鑫,张旭阳,黄长兵,汪康,顾明翔,吴伟. 试油数据在估算致密砂砾岩储层渗透率中的应用. 断块油气田. 2022(02): 214-217+238 . 百度学术
    9. 侯亚伟,刘超,徐中波,安玉华,李景玲. 多层水驱开发油田采收率快速预测方法. 石油钻探技术. 2022(05): 82-87 . 本站查看
    10. 刘慧,丁心鲁,张士杰,方云贵,郝晓波,郑玮鸽. 地下储气库注气过程一体化压力及地层参数计算方法. 石油钻探技术. 2022(06): 64-71 . 本站查看

    其他类型引用(5)

计量
  • 文章访问数:  4790
  • HTML全文浏览量:  123
  • PDF下载量:  3837
  • 被引次数: 15
出版历程
  • 收稿日期:  2017-07-27
  • 修回日期:  2018-01-06
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回