加砂油井水泥石高温力学性能衰退机制研究进展

姚晓, 葛荘, 汪晓静, 周仕明, 解志益, 何青水

姚晓, 葛荘, 汪晓静, 周仕明, 解志益, 何青水. 加砂油井水泥石高温力学性能衰退机制研究进展[J]. 石油钻探技术, 2018, 46(1): 17-23. DOI: 10.11911/syztjs.2018008
引用本文: 姚晓, 葛荘, 汪晓静, 周仕明, 解志益, 何青水. 加砂油井水泥石高温力学性能衰退机制研究进展[J]. 石油钻探技术, 2018, 46(1): 17-23. DOI: 10.11911/syztjs.2018008
YAO Xiao, GE Zhuang, WANG Xiaojing, ZHOU Shiming, XIE Zhiyi, HE Qingshui. Research Progress of Degradation of Mechanical Properties of Sand-Containing Cement in High Temperature Regimes[J]. Petroleum Drilling Techniques, 2018, 46(1): 17-23. DOI: 10.11911/syztjs.2018008
Citation: YAO Xiao, GE Zhuang, WANG Xiaojing, ZHOU Shiming, XIE Zhiyi, HE Qingshui. Research Progress of Degradation of Mechanical Properties of Sand-Containing Cement in High Temperature Regimes[J]. Petroleum Drilling Techniques, 2018, 46(1): 17-23. DOI: 10.11911/syztjs.2018008

加砂油井水泥石高温力学性能衰退机制研究进展

基金项目: 

国家科技重大专项"超深高温高压油气井固井关键技术"(编号:2017ZX05005005-003)和江苏高校优势学科建设工程资助项目联合资助。

详细信息
    作者简介:

    姚晓(1960-),男,安徽界首人,1982年毕业于西南石油学院油田化学专业,2000年获南京化工大学材料学博士学位,教授,博士生导师,长期从事固井材料研究工作。系本刊编委。

  • 中图分类号: TE256+.9

Research Progress of Degradation of Mechanical Properties of Sand-Containing Cement in High Temperature Regimes

  • 摘要: 加砂油井水泥是常用高温固井材料,但在部分高温地层服役时存在短期内水泥石力学性能明显衰退及水泥环层间封隔失效问题,明确其高温力学性能失效机制将有助于合理使用加砂油井水泥。为此,笔者调研了国内外加砂油井水泥高温水化产物和石英砂(掺量、粒径)对加砂水泥石力学性能影响的相关文献,并对其进行了归纳分析。结果表明:加砂油井水泥石在110~210℃温度下服役,可长期保持较好的抗高温性能;在210~300℃静态水环境下,通过调整石英砂级配和掺量可延缓水泥石高温下力学性能的衰退;地层温度超过300℃且处于动态水环境时,由于SiO2大量溶出,加砂油井水泥石难以满足热采井固井质量要求。此外,基于对加砂水泥石硅溶出、水化产物脱钙现象及硬硅钙石晶粒形貌变化的分析,探讨了加砂油井水泥石高温力学性能失效作用机制,并提出了改善其高温力学性能的技术措施。
    Abstract: Sand-containing cement,as the most common cementing material used in high temperature regimes,can encounter problems such as serious degradation of mechanical properties and failure of interval sealing of cement sheath in short time when being applied to high-temperature formations.Hence,the identification of a failure mechanism of mechanical properties under high temperature should facilitate the rational usage of sand-containing cement.By investigating the relevant domestic and overseas documents surrounding the effects of high-temperature hydration products and sand (with factors of quantity and grain size considered) mixed in sand-containing cement on its mechanical properties,it is possible to summarize and analyze the results in a single paper. Results indicated that the sand-containing cement could resist high temperature in a long term under 110-210℃;under the static water environment of 210-300℃,and that this formulation was capable of slowing down the degradation of mechanical properties of cement through adjusting the granular composition of quartz sand.Results also found that under the formation temperature of higher than 300℃ and with a dynamic water environment with a large quantity of SiO2 dissolved out,the sand-containing cement couldn’t meet the quality technical requirements for cementing the targeted thermal production wells.Further,based on the analysis of the phenomena of silicon separated from sand-containing cement and the decalcification of hydration products,along with the variation of morphology of xonotlite crystalline grains,it was possible to analyze and model the failure mechanism of mechanical properties of sand-containing cement under high temperature.At the end,recommendations for technical measures that would improve the properties were proposed and advanced.
  • [1]

    REDDY B R,ZHANG Jilin,ELLIS M.Cement strength retrogression issues in offshore deep water applications:do we know enough for safe cementing[R].OTC 27012,2016.

    [2] 2010年固井技术研讨会论文集编委会.2010年固井技术研讨会论文集[M].北京:石油工业出版社,2010:43-48. Editorial board of symposium of the 2010 cementing technology.Symposium of the 2010 cementing technology conference[M].Beijing:Petroleum Industry Press 2010:43-48.
    [3]

    PANG Xueyu,MEYER C,FUNKHOUSER G P,et al.Depressurization damage of oil well cement cured for 3 days at various pressures[J].Construction Building Materials,2015,74:268-277.

    [4]

    MA Cong,CHEN Longzhu,CHEN Bing.Analysis of strength development in soft clay stabilized with cement-based stabilize[J].Construction Building Materials,2014,71:354-362.

    [5]

    WON J,LEE D,NA K,et al.Physical properties of G-class cement for geothermal well cementing in South Korea[J].Renewable Energy,2015,80:123-131.

    [6]

    ZHU Huajun,WU Qisheng,ZHANG Changsen,et al.Thermal stability and structural characterization of class G oil well cement paste exposed to elevated temperature[J].Journal of Materials in Civil Engineering,2015,27(11):04015014

    [7] 张景富,徐明,闫占辉,等.高温条件下G级油井水泥原浆及加砂水泥的水化和硬化[J].硅酸盐学报,2008,36(7):939-945. ZHANG Jingfu,XU Ming,YAN Zhanhui,et al.Hydration and hardening of class G oilwell cement with and without silica sands under high temperatures[J].Journal of the Chinese Ceramic Society,2008,36(7):939-945.
    [8]

    EILERS L H,NELSON E B,MORAN L K.High-temperature cement compositions-pectolite,scawtite,truscottite,or xonotlite:which do you want[J].Journal of Petroleum Technology,1983,35(7):1373-1377.

    [9] 杨智光,崔海清,肖志兴.深井高温条件下油井水泥强度变化规律研究[J].石油学报,2008,29(3):435-437. YANG Zhiguang,CUI Haiqing,XIAO Zhixing.Change of cement stone strength in the deep high temperature oil well[J].Acta Petrolei Sinica,2008,29(3):435-437.
    [10]

    EILERS L H,ROOT R L.Long-term effects of high temperatureon strength retrogression of cements[R].SPE 5871,1976.

    [11]

    EILERS L H,ROOT R L.Long-term effects of high temperature on strength retrogression of cements[R].SPE 5028,1974.

    [12]

    BEZERRA U T,MARTINELLIA A E,MELO D M A,et al.The strength retrogression of special class Portland oilwell cement[J].Cermica,2011,57(342):150-154.

    [13]

    PERNITES R B,SANTRA A K.Portland cement solutions for ultra-high temperature wellbore applications[J].Cement and Concrete Composites,2016,72:89-103.

    [14] 王景建,冯克满,许前富,等.高温下加砂G级油井水泥强度发展规律研究[J].长江大学学报(自科版),2011,8(3):52-54. WANG Jingjian,FENG Keman,XU Qianfu,et al.The research of class G oil well cement strength development under the high temperature[J].Journal of Yangtze university (Natural Science Edition),2011,8(3):52-54.
    [15]

    NELSON E B,GUILLOT D.Well Cementing[M].2nd ed.New York:Schlumberger,2006.

    [16] 袁润章,李荣先,徐家保.中国土木建筑百科辞典:工程材料(上册)[M].北京:中国建筑工业出版社,2008:460-580. YUAN Runzhang,LI Rongxian,XU Jiabao.Encyclopedia of Chinese civil architecture:engineering materials (I)[M].Beijing:China Architecture Building Industry Press,2008:460-580.
    [17] 杨南如,岳文海.无机非属材料图谱手册[M].武汉:武汉工业大学出版社,2000:250-252. YANG Nanru,YUE Wenhai.The handbook of inorganic metalloid materials atlas[M].Wuhan:Wuhan University of Technology Press,2000:250-252.
    [18] 柯昌君.低碱度钢渣水热反应特性及其机理的研究[J].建筑材料学报,2007,10(2):142-147. KE Changjun.Hydrothermal performance and its mechanism of low alkalinity steel slag in autoclaved condition[J].Journal of Building Materials,2007,10(2):142-147.
    [19] 丁树修.高温地热井水泥水化硬化的研究[J].硅酸盐学报,1996,24(4):389-399. DING Shuxiu.High temperature geothermal well cement hydration hardening research[J].Journal of the Chinese Ceramic Society,1996,24(4):389-399.
    [20]

    MOREY G W,FOURNIER R O,ROW E J J.The solubility of quartz in water in the temperature interval from 25℃ to 300℃[J].Geochimica et Cosmochimica Acta,1962,26(10):1029-1040.

    [21]

    WEILL D F,FYFE W S.The solubility of quartz in H2O in the range 1000-4000 bars and 400-550℃[J].Geochimica et Cosmochimica Acta,1964,28(8):1243-1255.

    [22]

    BRANDL A,BRAY W S,DOHERTY D R.Technically and economically improved cementing system with sustainable components[R].SPE 136276,2010.

    [23] 格鲁特F F.岩石手册[M].张瑞锡,汪正然,译.上海:上海科学技术出版社,1959:44-60,121-164,179-190. GROUT F F.Rock hand book[M].ZHANG Ruixi,WANG Zhengran,translated.Shanghai:Shanghai Scientific Technical Publishers,1959:44-60,121-164,179-190.
    [24] 张生,李统锦.二氧化硅溶解度方程和地温计[J].地质科技情报,1997,16(1):55-58. ZHANG Sheng,LI Tongjin.Silicon dioxide solubility equation and geothermometer of silica-an overview[J].Geological Science and Technology Information,1997,16(1):55-58.
    [25]

    CHENC A,MARSHALL W L.Amorphous silica solubility IV:behavior in pure water and aqueous sodium chloride,sodium sulfate,magnesium chloride,and magnesium sulfate solutions up to 350℃[J].Geochimica et Cosmochimica Acta,1982,46(2):279-287.

    [26] 何真,王磊,邵一心,等.脱钙对水泥浆体中C-S-H凝胶结构的影响[J].建筑材料学报,2011,14(3):293-298. HE Zhen,WANG Lei,SHAO Yixin,et al.Effect of decalcification on C-S-H gel microstructure in cement paste[J].Journal of Building Materials,2011,14(3):293-298.
    [27]

    CHEN J J,THOMAS J J,JENNINGS H M.Decalcification shrinkage of cement paste[J].Cement and Concrete Research,2006,36(5):801-809.

    [28]

    COLEMAN N J,BRASSINGTON D S.Synthesis of Al-substituted 11 tobermorite from newsprint recycling residue:a feasibility study[J].Materials Research Bulletin,2003,38(3):485-497.

    [29]

    KRAKOWIAK K J,THOMAS J J,MUSSO S,et al.Nano-chemo-mechanical signature of conventional oil-well cement systems:effects of elevated temperature and curing time[J].Cement and Concrete Research,2015,67:103-121.

    [30]

    THOMAS J,JAMES,S,ORTEGA J A,et al.Fundamental investigation of the chemical and mechanical properties of high-temperature-cured oil well cement[R].OTC 23668,2012.

    [31] 张景富,俞庆森,徐明,等.G级油井水泥的水化及硬化[J].硅酸盐学报,2002,30(2):167-171. ZHANG Jingfu,YU Qingsen,XU Ming,et al.Hydration and hardening of class G oilwell cement[J].Journal of the Chinese Ceramic Society,2002,30(2):167-171.
    [32]

    SIRAPIAN A C,PERSHIKOVA E M,LOISEAU A.New steam resilient cement:evaluation of long-term properties under extreme conditions[R].SPE 141202,2011.

    [33]

    SALEHPOUR A G,PERSHIKOVA E,CHOUGNET-SIRAPIAN A,et al.Novel steam-resilient cement system for long-term steam injection well integrity:case study of a steam flooded field in Indonesia[R].SPE 166994,2013.

    [34]

    KRAKOWIAK K J,WILSON W,JAMES S,et al.Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis:application to cement-based materials[J].Cement and Concrete Research,2015,67:271-285.

    [35]

    SUYAN K M,DASGUPTA D,GARG S P,et al.Novel cement composition for completion of thermal recovery (ISC) wellbores[R].SPE 101848,2006.

    [36]

    DOHERTY D R,BRANDL A.Pushing Portland cement beyond the norm of extreme high temperature[R].SPE 134422,2010.

    [37]

    STILES D.Effects of long-term exposure to ultrahigh temperature on the mechanical parameters of cement[R].SPE 98896,2006.

    [38]

    VIPULANANDAN C,MOHAMMED A.Smart cement modified with iron oxide nanoparticles to enhance the piezoresistive behavior and compressive strength for oil well applications[J].Smart Materials and Structures,2015,24(12):125-132.

    [39]

    DE PAULA J N,CALIXTO J M,LADEIRA L O,et al.Mechanical and rheological behavior of oil-well cement slurries produced with clinker containing carbon nanotubes[J].Journal of Petroleum Science and Engineering,2014,122:274-279.

    [40]

    WANG Chengwen,CHEN Xin,WEI Xiaotong,et al.Can nanosilica sol prevent oil well cement from strength retrogression under high temperature?[J].Construction and Building Materials,2017,144:574-585.

    [41]

    El-GAMAL S M A,HASHEM F S,AMIN M S.Influence of carbon nanotubes,nanosilica and nanometakaolin on some morphological-mechanical properties of oil well cement pastes subjected to elevated water curing temperature and regular room air curing temperature[J].Construction and Building Materials,2017,146:531-546.

    [42]

    SUN Xiuxuan,WU Qinglin,ZHANG Jinlong,et al.Rheology,curing temperature and mechanical performance of oil well cement:combined effect of cellulose nanofibers and graphene nano-platelets[J].Materials Design,2017,114:92-101.

    [43] 路飞飞,李斐,田娜娟,等.复合加砂抗高温防衰退水泥浆体系[J].钻井液与完井液,2017,34(4):85-89. LU Feifei.LI Fei,TIAN Najuan,et al.High termperatare anti stength retrogression cement slurry with compoumded silica powder[J].Drilling Fluid Completion Fluid,2017,34(4):85-89.
  • 期刊类型引用(4)

    1. 薛成,谢明英,冯沙沙,涂志勇,陈一鸣,侯凯. 水平井地质导向技术在海上油田薄油层开发中的应用. 录井工程. 2023(04): 42-48 . 百度学术
    2. 陆自清. 基于卡尔曼滤波的动态地质模型导向方法. 石油钻探技术. 2021(01): 113-120 . 本站查看
    3. 苏洲,刘永福,韩剑发,杨淑雯,刘博,赖鹏,彭鹏,张慧芳,易珍丽. 相控约束下的超深薄层砂体预测技术在塔北隆起玉东区块中的应用. 天然气地球科学. 2020(02): 295-306 . 百度学术
    4. 高弘毅,王光,夏竹君,杨坚,程宝庆. 水平井随钻地质导向技术在南海某气田的应用. 石化技术. 2019(11): 164 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  4611
  • HTML全文浏览量:  121
  • PDF下载量:  4247
  • 被引次数: 5
出版历程
  • 收稿日期:  2017-07-02
  • 修回日期:  2018-01-07
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回