Completion Techniques Involving Gravel-Packing Inflow-Control Screens in Horizontal Wells
-
摘要: 针对常规水平井调流控水筛管完井存在封隔器封隔长度短、封隔段数有限和深井封隔器下入困难等技术难点,开展了水平井砾石充填调流控水筛管完井技术研究。在分析水平井砾石充填调流控水筛管完井技术原理及技术难点的基础上,分析对比不同类型调流控水筛管的优缺点,选用节流嘴式调流控水筛管或流道式调流控水筛管;根据水平井砾石充填调流控水完井的要求,优选聚合物低密度砾石作为充填砾石,并通过试验评价了砾石充填层的封隔效果,结果表明,砾石充填层可以阻止进入井筒内流体的横向流动,起到封隔器的作用;给出了砾石充填工艺,形成了水平井砾石充填调流控水完井技术。该技术在塔河油田A水平井进行了现场试验,与试验前相比,该井产油量提高了411.8%,含水率降低了13.5百分点。研究结果表明,水平井砾石充填调流控水筛管完井技术可以提高调流控水筛管的调控精度,起到稳油控水作用,具有一定的推广应用价值。Abstract: Conventional completion techniques involving inflow-control screen in horizontal wells are characterized by short packing intervals,limited packing intervals,difficulties in the installation of packers in deep wells and other technical challenges.Under such circumstances,research has been conducted to develop completion techniques involving gravel-packing inflow-control screens in horizontal wells.Based on studies related to technical principles and technical challenges in completion techniques involving gravel-packing inflow-control screens in horizontal wells,the advantages and drawbacks of screens of various types were reviewed.Subsequently,screens with choke nozzles or those with flowing channels were deployed.In consideration of requirements for completion involving grave-packing inflow-control screens in horizontal wells,polymer gravels with lower densities were used as packing gravels.Tests were conducted to assess the packing performances of gravels.Relevant results showed the gravel-packing layers could effectively eliminate horizontal flow of fluids in the borehole.Consequently,the layers might serve as packers.By highlighting gravel-packing techniques,completion techniques involving gravel-packing inflow-control screens in horizontal wells were developed.Field applications were performed in the horizontal Well A in the Tahe Oilfield.Compared with those before application,the the well productivity was enhanced by 411.8%,where as the water-cut was reduced by 13.5percent.Research results showed the completion techniques involving gravel-packing inflow-control screens in horizontal wells could effectively enhance the accuracy of the screen to stabilize oil production and to minimize the water cut. Such innovative technologies may be deployed more extensively to enhance production performances.
-
Keywords:
- horizontal well /
- screen pipe completion /
- gravel packing /
- water flow control /
- Tahe Oilfield
-
涪陵页岩气田共建成焦石坝、江东、平桥、白涛和白马等5个生产区块,不同区块、不同生产阶段的气井其产气、产水特征差异较大。受产量递减、井筒积液的影响,气井生产时率逐渐降低。该气田主要采用ϕ73.0 mm×5.51 mm、ϕ60.3 mm×4.83 mm普通油管和ϕ50.8 mm×4.45 mm、ϕ38.1 mm×3.68 mm连续油管等4种规格的采气管柱,其中连续油管具有单井成本低、起下速度快、工序简单和施工时效性高等优点[1],在涪陵页岩气井中的应用越来越广泛。由于不同气井的连续油管压力损耗、稳产时间、稳产期累计产气量存在差异,笔者基于现场应用情况,分析了连续油管直径、下入深度和下入时机对气井生产效果的影响,明确了连续油管的适用范围,为提高连续油管在涪陵页岩气田的应用效果提供了依据。
1. 涪陵页岩气田连续油管应用情况
目前,涪陵页岩气田42口生产井采用连续油管采气管柱,其中,采用ϕ50.8 mm×4.45 mm连续油管的井有36口,采用ϕ38.1 mm×3.68 mm连续油管的井有6口。连续油管最浅下深为2 220.00 mm(井斜角30°),最深下深为4 400.00 m(井斜角85°),平均下深3 200.00 mm。采用连续油管采气管柱的生产井初期产气量为(1.10 ~7.80)×104 m3/d,产水量为0.55~18.90 m3/d,水气比为0.08 ~10.90 m3/104m3。总体来看,页岩气井产能在一定程度上决定了气井生产效果,但采气管柱的优选更为重要。在无阻流量相同的情况下,水气比高的页岩气井下入连续油管后生产不稳定、产量较低,其中,15口典型井的生产数据见表1。
表 1 涪陵页岩气田采用连续油管采气管柱的15口典型井生产情况统计Table 1. Production statistics of 15 typical wells with coiled tubing gas producing pipe stings in Fuling Shale Gas Field井号 初期产量/(104m3·d–1) 近期产量/(104m3·d–1) 无阻流量/(104m3·d–1) 平均水气比/
(m3·(104m3)–1)连续油管生产阶段产气量/
104m3JY1 1.0 1.1 3.6 10.90 12.1 JY2 2.0 1.8 4.6 0.45 2 260.6 JY3 2.0 0.3 7.6 5.50 284.6 JY4 2.3 1.2 3.8 2.50 251.4 JY5 2.5 1.2 3.3 2.00 762.6 JY6 3.7 2.1 4.2 0.30 3 300.6 JY7 4.2 4.0 5.1 0.30 6 345.0 JY8 5.5 1.8 2.5 0.10 3 383.0 JY9 6.0 1.2 3.0 0.10 3 073.7 JY10 6.0 3.3 1.5 0.20 2 271.4 JY11 6.0 3.2 3.0 0.10 6 748.3 JY12 6.1 3.3 1.5 0.20 2 196.9 JY13 7.5 5.2 6.6 0.10 2 867.2 JY14 7.5 1.5 4.0 0.08 4 292.9 JY15 7.8 4.6 7.9 0.08 8 356.5 2. 连续油管生产效果的影响因素
2.1 连续油管直径
2.1.1 连续油管直径对携液效果的影响
页岩气均采用水平井开发,而水平井的造斜段最易积液,故提高造斜段携液能力是解决水平气井积液和优化采气管柱的重点[2-7]。王琦[8]通过试验证明井斜角在50°左右时临界携液气量最大,并以50°井斜角的临界携液气量为气井的临界携液气量,建立了振荡式冲击携液临界气流量计算模型。采用该临界携液气流量模型,计算了不同直径油管在不同井底压力(井斜角为50°)条件下的临界携液气量,结果如图1所示。从图1可以看出,与ϕ60.3 mm×4.83 mm普通油管相比,ϕ50.8 mm×4.45 mm连续油管的临界携液气量平均降低38%。因此,单从携液能力的角度考虑,采用的油管直径越小,越有利于气井的携液。
2.1.2 连续油管直径对井筒压耗的影响
涪陵页岩气田不同规格连续油管生产井的产气量每增加1×104 m3时的单位长度井筒压耗统计结果如图2所示。从图2可以看出,虽然采用更小直径的连续油管能够降低气井的临界携液气量,但连续油管的直径越小,单位长度井筒压耗越大。由图2还可以看出,水气比对单位长度井筒压耗的影响较大,当采用ϕ50.8 mm×4.45 mm连续油管生产且水气比大于1.5 m3/104m3时,产气量每增加1×104 m3的单位长度井筒压耗开始有所增大;当采用ϕ38.1 mm×3.68 mm连续油管生产且水气比大于1.0 m3/104m3时,产气量每增加1×104m3的单位长度井筒压耗明显增大。
2.1.3 连续油管直径对气井稳产期的影响
计算不同直径连续油管在临界携液气量下的井底流压,作为气井稳产期末的停喷井底流压,用以评价连续油管生产气井的稳产期。目前,工程上常用的各种气液两相管流压降计算模型的建立基础不同,其适用条件也不相同[9]。田云等人[10]对8个常用气液两相管流压降模型进行了评价,发现Gray模型的计算结果与连续油管实际生产情况最吻合。故笔者采用Gray模型,计算垂深3 000.00 m气井、外输压力为4.5 MPa条件下采用不同直径油管生产时的停喷井底流压,结果如图3所示。
从图3可以看出:水气比越高,油管直径对气井稳产期末停喷井底流压的影响越显著;水气比在0~1.5 m3/104m3时,与采用ϕ60.3 mm×4.83 mm普通油管生产相比,采用ϕ50.8 mm×4.45 mm连续油管生产时气井的停喷井底流压差别不大且均较低,但ϕ50.8 mm×4.45 mm连续油管的临界携液气量更低,因此水气比在0~1.5 m3/104m3时,能够将气井废弃产量和地层废弃压力降至最低;ϕ38.1 mm×3.68 mm连续油管的停喷井底流压相对较高,适用范围较窄。
统计涪陵页岩气田ϕ60.3 mm×4.83 mm、ϕ50.8 mm×4.45 mm、ϕ38.1 mm×3.68 mm等3种油管在不同水气比条件下的稳产时间和稳产期累计产气量,结果如图4、图5所示。从图4、图5可以看出,水气比在0~1.5 m3/104m3时,采用ϕ50.8 mm×4.45 mm连续油管生产能够获得更长的稳产期和更高的稳产期累计产气量。综合考虑连续油管直径对气井携液、井筒压耗、气井稳产时间的影响,水气比在0~1.5 m3/104m3的页岩气井,采用ϕ50.8 mm×4.45 mm连续油管采气管柱,生产效果更佳。
2.2 连续油管下深
2.2.1 连续油管下深对携液效果的影响
由于井斜角50°左右井段携液最难,因此连续油管应下到井斜角大于50°的井段。表2为3口连续油管不同下深页岩气井生产效果的对比情况;图6为3口连续油管不同下深页岩气井的生产曲线。
表 2 连续油管不同下深页岩气井生产效果对比Table 2. Production effect comparison of shale gas wells with different setting depths of coiled tubing井号 连续油管下深/m 井斜角/(°) 初期套压/MPa 平均水气比/(m3·(104m3)–1) 初期配产/(104m3·d–1) 自喷稳产期/d 自喷累计产气量/104m3 JY20 2 220 30 13.7 0.11 6 556 2 191 JY21 2 250 45 13.8 0.24 6 976 1 730 JY22 2 900 55 12.5 0.79 6 1 037 4 389 注:JY20井、JY21井和JY22井均采用ϕ50.8 mm×4.45 mm连续油管生产。 从表2和图6可以看出,在连续油管下入初期井口套压和配产相同的条件下,即使JY22井的水气比略高于JY20井和JY21井,且连续油管下入初期该井的井口套压略低于JY20井和JY21井,JY22井也能维持较长的稳产期和较大的稳产期累计产气量。其原因是,JY22井连续油管下到了井斜角大于50°的井段,JY20井和JY21井连续油管都下到了井斜角小于50°的井段,而井斜角50°的井段携液最难,易积液,导致JY20井和JY21井生产连续性较差。
2.2.2 连续油管下深对井筒压耗的影响
统计涪陵页岩气井不同水气比区间下入ϕ50.8 mm×4.45 mm连续油管生产1×104 m3气的井筒压耗,结果如图7所示。从图7可以看出:井筒压耗与连续油管下深正相关;水气比高于1.5 m3/104m3后,连续油管下深对井筒压耗的影响增大;水气比越高,井筒压耗随连续油管下深增大的幅度越大。
2.3 连续油管下入时机对气井稳产效果的影响
选取下入ϕ50.8 mm×4.45 mm连续油管、生产时间较长、已进入间歇生产的页岩气井进行统计分析,结果见表3。由表3可知:在相同水气比条件下,下入连续油管前页岩气井生产时间越短,页岩气井自喷稳产期越长,自喷期累计产气量越高;下连续油管前页岩气井生产时间相同,水气比越大,连续油管的生产效果越差。因此,在较低水气比条件下,越早下入ϕ50.8 mm×4.45 mm连续油管,生产过程中携液稳产效果越好,自喷稳产期越长,连续油管自喷生产阶段累计产气量越高。
表 3 连续油管下入时机对气井生产效果的影响情况Table 3. Statistics on the influence of coiled tubing setting timing on gas well production水气比/
(m3·(104m3)–1)生产时间/d 自喷累计产气量/
104m3下入前 自喷稳产 2.50 596 4 12.1 2.00 364 230 762.6 2.50 500 141 251.3 2.00 501 108 284.5 0.30 202 691 3300.5 0.30 10 1 344 4292.9 0.10 212 833 3073.7 0.10 101 956 3382.9 0.10 10 1 411 6344.9 3. 结论与建议
1)研究表明,油管直径越小,越有利于气井携液,但同时会增大井筒压耗。综合考虑连续油管直径对气井携液、井筒压耗、气井稳产时间的影响,对于水气比小于1.5 m3/104m3的气井,采用ϕ50.8 mm×4.45 mm连续油管生产效果较好。
2)涪陵页岩气田的页岩气井需要压裂后投产,产出水均为返排压裂液。因此,对于水气比在0~1.5 m3/104m3的气井,建议尽早下入ϕ50.8 mm×4.45 mm连续油管,这样既有助于压裂液连续返排,也能使页岩气井获得更长的自喷稳产时间和更大的自喷累计产气量。
-
[1] TOR E,ALPAY E,GORDON G,等.向井流动控制装置:改善流动剖面[J].油田新技术,2009,21(4):30-37. TOR E,ALPAY E,GORDON G,et al.The well flow control device-to improve flow profile[J].Oilfield Review,2009,21(4):30-37. [2] 徐鑫.水平井控流筛管完井技术研究及应用[J].石油钻探技术,2014,42(3):71-75. XU Xin.Development and application of flow control screen completion for horizontal wells[J].Petroleum Drilling Techniques,2014,42(3):71-75. [3] 赵勇,杨海波,何苏荣.胜利低渗油田水平井筛管分段控流完井技术[J].石油钻探技术,2012,40(3):18-22. ZHAO Yong,YANG Haibo,HE Surong.Well completion technique with screen pipe controlling flow by segments in horizontal well of low permeability resevoirs in Shengli Oilfield[J].Petroleum Drilling Techniques,2012,40(3):18-22. [4] 张国文,钱杰,刘凤,等.水平井控水完井管柱研究与应用[J].石油机械,2013,41(3):89-91. ZHANG Guowen,QIAN Jie,LIU Feng,et al.Research and application of the water control completion string for horizontal wells[J].China Petroleum Machinery,2013,41(3):89-91. [5] 熊友明,刘理明,张林,等.我国水平井完井技术现状与发展建议[J].石油钻探技术,2012,40(1):1-6. XIONG Youming,LIU Liming,ZHANG Lin,et al.Present status and development comments on horizontal well completion techniques in China[J].Petroleum Drilling Techniques,2012,40(1):1-6. [6] OUYANG Liangbiao.Pratical consideration of an inflow-control device application for reducing water production[R].SPE 124154,2009.
[7] AL ARFI S A,MOHAMED O Y,KESHKA A A,et al.Inflow control device an innovative completion solution from "extended wellbore to extended well life cycle"[R].SPE 119599,2009.
[8] 王金忠,肖国华,陈雷,等.水平井管内分段调流控水技术研究与应用[J].石油机械,2011,39(1):60-61,84. WANG Jinzhong,XIAO Guohua,CHEN Lei,et al.Research and application of the staged flow-regulating and water-control technology with screen or tubing in horizontal holes[J].China Petroleum Machinery,2011,39(1):60-61,84. [9] 李良川,肖国华,王金忠,等.冀东油田水平井分段控水配套技术[J].断块油气田,2010,17(6):655-658. LI Liangchuan,XIAO Guohua,WANG Jinzhong,et al.Sectionalized water control matching technology of horizontal well in Jidong Oifield[J].Fault-Block Oil Gas Field,2010,17(6):655-658. [10] 强晓光,姜增所,宋颖智.调流控水筛管在冀东油田水平井的应用研究[J].石油矿场机械,2011,40(4):77-79. QIANG Xiaoguang,JIANG Zengsuo,SONG Yingzhi.Research and application of water control screenpipe in Jidong Oilfield horizontal well[J].Oil Field Equipment,2011,40(4):77-79. [11] 赵崇镇.水平井自适应调流控水装置研制与应用[J].石油钻探技术,2016,44(3):95-100. ZHAO Chongzhen.Development and application of an autonomous inflow control device in horizontal wells[J].Petroleum Drilling Techniques,2016,44(3):95-100. [12] 刘均荣,于伟强.ICD/ICV井下流量控制技术[J].石油矿场机械,2013,42(3):1-6. LIU Junrong,YU Weiqiang.Downhole inflow control technology with ICD/ICV[J].Oil Field Equipment,2013,42(3):1-6. [13] 王庆,刘慧卿,张红玲,等.油藏耦合水平井调流控水筛管优选模型[J].石油学报,2011,32(2):346-349. WANG Qing,LIU Huiqing,ZHANG Hongling,et al.An optimization model of completion strings with inner-located nozzle in horizontal wells coupled with reservoirs[J].Acta Petrolei Sinica,2011,32(2):346-349. [14] 赵旭,姚志良,刘欢乐.水平井调流控水筛管完井设计方法研究[J].石油钻采工艺,2013,35(1):23-27. ZHAO Xu,YAO Zhiliang,LIU Huanle.Technical research on well completion design with inflow control device (ICD) in horizontal wells[J].Oil Drilling Production Technology,2013,35(1):23-27. [15] 王超,张军杰,刘广燕.水平井分段控水完井试油技术[J].石油天然气学报,2010,32(6):446-449. WANG Chao,ZHANG Junjie,LIU Guangyan.The horizontal well section control water completion oil test technology[J].Journal of Oil and Gas Technology,2010,32(6):446-449. [16] 郑永哲,杨士明,于学良,等.大港滩海赵东区块水平井裸眼砾石充填防砂完井技术[J].石油钻探技术,2009,37(4):88-92. ZHENG Yongzhe,YANG Shiming,YU Xueliang,et al.Horizontal well open hole gravel packing sand control completion technique used in Zhaodong Block,Dagang Offshore[J].Petroleum Drilling Techniques,2009,37(4):88-92. [17] 王登庆.水平井砾石充填防砂工艺技术研究[D].东营:中国石油大学(华东)石油工程学院,2008. Wang Dengqing.Research on gravel packing sand control for horizontal well[D].Dongying:China University of Petroleum(Huadong),School of Petroleum Engineering,2008. -
期刊类型引用(3)
1. 于洋. 连续油管泡沫钻塞技术研究与应用. 复杂油气藏. 2022(02): 90-96 . 百度学术
2. 柳军,杜智刚,牟少敏,王睦围,张敏,殷腾,俞海,曹大勇. 连续油管分簇射孔管柱通过能力分析模型及影响因素研究. 特种油气藏. 2022(05): 139-148 . 百度学术
3. 任鸽. 连续油管作业在深部煤系气井压裂返排砂堵中的应用. 山东煤炭科技. 2021(04): 172-174 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 8107
- HTML全文浏览量: 202
- PDF下载量: 6818
- 被引次数: 3