基于音频信号的气体钻井返出岩屑量监测方法研究

夏文鹤, 潘硕, 孟英峰, 李永杰

夏文鹤, 潘硕, 孟英峰, 李永杰. 基于音频信号的气体钻井返出岩屑量监测方法研究[J]. 石油钻探技术, 2017, 45(3): 121-126. DOI: 10.11911/syztjs.201703021
引用本文: 夏文鹤, 潘硕, 孟英峰, 李永杰. 基于音频信号的气体钻井返出岩屑量监测方法研究[J]. 石油钻探技术, 2017, 45(3): 121-126. DOI: 10.11911/syztjs.201703021
XIA Wenhe, PAN Shuo, MENG Yingfeng, LI Yongjie. The Returned Cuttings Monitoring Method for Gas Drilling Based on Audio Signals[J]. Petroleum Drilling Techniques, 2017, 45(3): 121-126. DOI: 10.11911/syztjs.201703021
Citation: XIA Wenhe, PAN Shuo, MENG Yingfeng, LI Yongjie. The Returned Cuttings Monitoring Method for Gas Drilling Based on Audio Signals[J]. Petroleum Drilling Techniques, 2017, 45(3): 121-126. DOI: 10.11911/syztjs.201703021

基于音频信号的气体钻井返出岩屑量监测方法研究

基金项目: 

国家科技重大专项"复杂地层钻井提速提效关键工具与装备研发"(编号:2016ZX05021-003-003HZ)部分研究内容。

详细信息
    作者简介:

    夏文鹤(1978—),男,四川成都人,2001年毕业于重庆大学自动化专业,2007年获电子科技大学测试计量技术及仪器专业硕士学位,油气井测量与控制专业在读博士研究生,主要从事油气测量与控制方向的研究工作。

  • 中图分类号: TE242

The Returned Cuttings Monitoring Method for Gas Drilling Based on Audio Signals

  • 摘要: 为了监测钻井过程中的井壁坍塌、井底岩爆等井下工况信息,进行了基于音频信号的气体钻井返出岩屑量监测方法研究。该方法利用音频采集系统采集返出岩屑在排砂管中运移所产生的音频信号,根据短时能量确定声音段的起止点并计算特征参数,建立声音的特征参数库,再利用神经网络算法排除干扰声音,然后分析排砂管内不同大小岩屑的声音特征,利用动态时间弯折算法识别岩屑的大小,计算岩屑流量,进而判断气体钻井携岩状态及井下工况。双探7井现场试验结果表明,该方法对干扰声音的分类成功率达到96.8%,对不同粒径岩屑的识别率达到85.0%。研究结果表明,基于音频信号的气体钻井返出岩屑量监测方法可以监测返出岩屑流量变化情况,有效判断气体钻井的井下工况,从而降低气体钻井作业风险。
    Abstract: To find the best way to monitor the process of well drilling (e.g.wellbore collapse and bottom hole rock burst),the method of returned cuttings monitoring in gas drilling based on audio signals was studied.In this method,an audio acquisition system is used to collect the audio signals generated from the migration of the returned cuttings in the clearance pipe.The starting and ending points of sound segments are determined and correlatedto the short-time energy by which their characteristic parameters can be calculated.After a sound characteristic parameter database is created,interference sound is eliminated through a neural network algorithm.Then,the acoustic characteristics of cuttings with different size in the clearance pipe are analyzed.The cuttings sizes can be differentiated by using the dynamic time warping after which the flow rate of cuttings then is calculated.Accordingly,the carrying status of the cuttings and downhole working condition of gas drilling can be primarily determined.This method was tested on site in Well Shuangtan 7 and results demonstrated that the classification success rate of interference sounds reached 96.8% and the identification rate of cuttings size reached 85%.Results also indicate that this method of monitoring the amount of returned cuttings in gas drilling based on the audio signal can also be used to monitor the variation trend of cuttings flow rate and effectively determine downhole working conditions and thus reduce risk in drilling gas wells.
  • [1] 冯林,母亚军,杨代明,等.马深1井二开大井眼优快钻井技术[J].石油钻采工艺,2016,38(5):577-582. FENG Lin,MU Yajun,YANG Daiming,et al.Big hole of second section of Well Mashen-1 optimized drilling technology[J].Oil Drilling Production Technology,2016,38(5):577-582.
    [2] 邓柯.国内气体钻井技术发展现状与应用前景浅析[J].钻采工艺,2015,38(2):20-22. DENG Ke.Development status and application prospect of gas drilling technologies in China[J].Drilling Production Technology,2015,38(2):20-22.
    [3] 肖新磊.空气钻井技术在元坝地区的应用[J].石油钻探技术,2010,38(4):35-37. XIAO Xinlei.Application of air drilling technique in Yuanba Area[J].Petroleum Drilling Techniques,2010,38(4):35-37.
    [4] 石建刚,杨虎,周鹏高,等.火烧山北部石炭系推覆体气体钻井技术[J].石油钻探技术,2014,42(1):114-118. SHI Jiangang,YANG Hu,ZHOU Penggao,et al.Gas drilling technology for Carboniferous Nappe in Northern Huoshaoshan[J].Petroleum Drilling Techniques,2014,42(1):114-118.
    [5] 金衍,陈勉,卢运虎,等.一种气体钻井井壁稳定性分析的简易方法[J].石油钻采工艺,2009,31(6):48-52. JIN Yan,CHEN Mian,LU Yunhu,et al.A simple means for gas drilling wellbore stability analysis[J].Oil Drilling Production Technology,2009,31(6):48-52.
    [6] 刘金龙,李永杰,王延民,等.气体钻井返出气体检测方法研究[J].断块油气田,2013,20(1):6-9. LIU Jinlong,LI Yongjie,WANG Yanmin,et al.Study on return gas detection methods for gas drilling[J].Fault-Block Oil Gas Field,2013,20(1):6-9.
    [7] 尹国庆,梁艺苇,琚岩,等.石油钻井中影响井壁稳定性因素分析[J].长春工程学院学报(自然科学版),2016,17(3):89-93. YIN Guoqing,LIANG Yiwei,JU Yan,et al.The affecting factors analysis of borehole wall stability in petroleum drilling[J].Journal of Changchun Institute of Technology(Natural Science Edition),2016,17(3):89-93.
    [8] 马晓伟,窦金永,董玉辉,等.气体钻井返出岩屑监测方法研究[J].西部探矿工程,2011,23(6):83-84. MA Xiaowei,DOU Jinyong,DONG Yuhui,et al.Research on return cuttings monitor method for gasdrilling[J].West-China Exploration Engineering,2011,23(6):83-84.
    [9] 伍宗富,蔡明山,陈日新.基于短时处理的异常声音辨识系统研制[J].中国农机化,2011,32(2):125-128. WU Zongfu,CAI Mingshan,CHEN Rixin.Research and realization of abnormal noise recognition system based on short-term treatment[J].Chinese Agricultural Mechanization,2011,32(2):125-128.
    [10] 刘华平,李昕,徐柏龄,等.语音信号端点检测方法综述及展望[J].计算机应用研究,2008,25(8):2278-2283. LIU Huaping,LI Xin,XU Boling,et al.Summary and survey of endpoint detection algorithm for speech signals[J].Application Research of Computers,2008,25(8):2278-2283.
    [11] 吕霄云,王宏霞.基于MFCC和短时能量混合的异常声音识别算法[J].计算机应用,2010,30(3):796-798. LYU Xiaoyun,WANG Hongxia.Abnormal audio recognition algorithm based on MFCC and short-term energy[J].Journal of Computer Applications,2010,30(3):796-798.
    [12] 刘波霞,陈建峰.基于特征分析的环境声音事件识别算法[J].计算机工程,2011,37(22):261-263. LIU Boxia,CHEN Jianfeng.Environment acoustic event recognition algorithm based on feature analysis[J].Computer Engineering,2011,37(22):261-263.
    [13] 郭敏,梅亚敏.基于碰撞声信号的玉米颗粒识别与分类[J].陕西师范大学学报(自然科学版),2012,40(5):31-34. GUO Min,MEI Yamin.The identification and classification of corn kernels based on impact acoustic signal[J].Journal of Shaanxi Normal University (Natural Science Edition),2012,40(5):31-34.
    [14] 郭建华,李黔,王锦,等.气体钻井岩屑运移机理研究[J].天然气工业,2006,26(6):66-67. GUO Jianhua,LI Qian,WANG Jin,et al.Study on cuttings migration mechanism during gas drilling[J].Natural Gas Industry,2006,26(6):66-67.
    [15] 柳贡慧,宋廷远,李军.气体钻水平井气体携岩能力分析[J].石油钻探技术,2009,37(5):26-29. LIU Gonghui,SONG Tingyuan,LI Jun.Analysis of cuttings transportation during drilling gas horizontal wells[J].Petroleum Drilling Techniques,2009,37(5):26-29.
    [16] 唐佳彤.气体钻井最小气体体积流量计算新方法[J].石油钻探技术,2015,43(4):73-77. TANG Jiatong.A new calculation method of minimum gas volume flow rate for gas drilling[J].Petroleum Drilling Techniques,2015,43(4):73-77.
    [17] 魏纳,孟英峰,李皋,等.欠平衡钻水平井岩屑运移可视化实验[J].天然气工业,2014,34(1):80-85. WEI Na,MENG Yingfeng,LI Gao,et al.A visualization experiment of cuttings transport in underbalanced horizontal wells[J].Natural Gas Industry,2014,34(1):80-85.
    [18] 刘敬伟,徐美芝,郑忠国,等.基于DTW的语音识别和说话人识别的特征选择[J].模式识别与人工智能,2005,18(1):50-54. LIU Jingwei,XU Meizhi,ZHENG Zhongguo,et al.DTW-based feature selection for speech recognition and speakerrecognition[J].Pattern Recognition Artificial Intelligence,2005,18(1):50-54.
  • 期刊类型引用(6)

    1. 李林,张龙,李勇,冯胤翔,李皋,肖东. 基于静电流量计的气体钻井返出岩屑流量监测. 科学技术与工程. 2023(15): 6402-6408 . 百度学术
    2. 范玉光,田中兰,明瑞卿,杨恒林,付利,王元,郭凯杰. 国内外水平井井眼清洁监测技术现状及发展建议. 石油机械. 2020(03): 1-9 . 百度学术
    3. 王巧宁. 基于LabVIEW平台的建筑室内能量传递监测系统设计. 电子设计工程. 2020(10): 60-64 . 百度学术
    4. 李伟,李硕. 理解数字声音——基于一般音频/环境声的计算机听觉综述. 复旦学报(自然科学版). 2019(03): 269-313 . 百度学术
    5. 姜峰. 英语语音合理性自动化识别模型研究. 自动化与仪器仪表. 2019(09): 202-205 . 百度学术
    6. 王沛,欧阳传湘,陈宏生,陈向军. 应用PCA和多元非线性回归快速预测储层敏感性. 断块油气田. 2018(02): 232-235 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  6030
  • HTML全文浏览量:  120
  • PDF下载量:  5481
  • 被引次数: 8
出版历程
  • 收稿日期:  2017-01-05
  • 修回日期:  2017-05-01
  • 刊出日期:  2017-07-05

目录

    /

    返回文章
    返回