通道压裂裂缝导流能力数值模拟研究

杨英涛, 温庆志, 段晓飞, 王淑婷, 王峰

杨英涛, 温庆志, 段晓飞, 王淑婷, 王峰. 通道压裂裂缝导流能力数值模拟研究[J]. 石油钻探技术, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018
引用本文: 杨英涛, 温庆志, 段晓飞, 王淑婷, 王峰. 通道压裂裂缝导流能力数值模拟研究[J]. 石油钻探技术, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018
YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018
Citation: YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018

通道压裂裂缝导流能力数值模拟研究

详细信息
    作者简介:

    杨英涛(1993-),男,山东东营人,2015年毕业于中国石油大学(华东)石油工程专业,在读硕士研究生,主要从事储层改造及多相流方面的研究。

  • 中图分类号: TE357.1

Numerical Simulation for Flow Conductivity in Channeling Fractures

  • 摘要: 为了计算通道压裂裂缝在实际条件下的导流能力并分析影响导流能力的因素,在分析通道压裂砂堤分布规律的基础上,建立了裂缝内流体流动模型,利用数值模拟方法模拟了某一通道压裂气井裂缝内流体的流动规律和压力分布规律,并计算了裂缝的导流能力。结果表明:通道压裂裂缝的导流能力基本不随井底流压、气体密度和气体黏度变化;通道压裂裂缝内空隙通道的结构和分布是影响裂缝导流能力的主要因素,如果通道压裂裂缝内没有形成连续的大通道或大通道坍缩形成离散分布的空隙结构,则裂缝内流体的流动阻力会增大,从而导致通道压裂裂缝导流能力较预期有大幅度降低。该研究结果可为提高通道压裂裂缝的导流能力提供理论依据。
    Abstract: To determine the conductivity of channeling fractures under field conditions and to identify factors that may affect such conductivity, a fluid flow model has been established in accordance with distribution of fractured sand bars. In addition, a numerical simulation has been performed to determine flow patterns of fluids in certain fracture and to calculate conductivity of such fractures. Research results showed that structures and distribution of pore channels in channeling fractures were key factors that might affect the conductivity of fractures. In the case that no continuous large channels were generated, or such major channels collapsed to generate dispersedly distributed pore structures, fluids in the fracture might encounter significant flow resistance. Under such circumstances, conductivities of channeling fractures might be reduced significantly. Relevant research results might provide a solid foundation to enhance conductivity of channeling fractures.
  • [1] 李庆辉,陈勉,金衍,等.新型压裂技术在页岩气开发中的应用[J].特种油气藏,2012,19(6):1-7. LI Qinghui,CHEN Mian,JIN Yan,et al.Application of new fracturing technologies in shale gas development[J].Special Oil & Gas Reservoirs,2012,19(6):1-7.
    [2] 刘向军.高速通道压裂工艺在低渗透油藏的应用[J].油气地质与采收率,2015,22(2):122-126. LIU Xiangjun.Application of hiway technology in the low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2015,22(2):122-126.
    [3] 钟森,任山,黄禹忠,等.高速通道压裂技术在国外的研究与应用[J].中外能源,2012,17(6):39-42. ZHONG Sen,REN Shan,HUANG Yuzhong,et al.Research and application of channel fracturing technique in foreign oil and gas field[J].Sino-Global Energy,2012,17(6):39-42.
    [4]

    GILLARD M R,MEDVEDEV O O,HOSEIN P R,et al.A new approach to generating fracture conductivity[R].SPE 135034,2010.

    [5]

    AHMED M,HUSSAIN A,AHMED M.Optimizing production of tight gas wells by revolutionizing hydraulic fracturing[R].SPE 171408,2011.

    [6]

    MEDVEDEV A V,KRAEMER C C,PENA A A,et al.On the mechanisms of channel fracturing[R].SPE 163836,2013.

    [7] 曲占庆,周丽萍,曲冠政,等.高速通道压裂支撑裂缝导流能力实验评价[J].油气地质与采收率,2015,22(1):122-126. QU Zhanqing,ZHOU Liping,QU Guanzheng,et al.Experimental evaluation on influencing factors of flow conductivity for channel fracturing proppant[J].Petroleum Geology and Recovery Efficiency,2015,22(1):122-126.
    [8] 许国庆,张士诚,王雷,等.通道压裂支撑裂缝影响因素分析[J].断块油气田,2015,22(4):534-537. XU Guoqing,ZHANG Shicheng,WANG Lei,et al.Infleuence factors analysis of proppant fracture in channel fracturing[J].Fault-Block Oil & Gas Field,2015,22(4):534-537.
    [9]

    MEAKIN P,TARTAKOVSKY A M.Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media[J].Reviews of Geophysics,2009,47(3):4288-4309.

    [10] 吴国涛,胥云,杨振周,等.考虑支撑剂及其嵌入程度对支撑裂缝导流能力影响的数值模拟[J].天然气工业,2013,33(5):65-68. WU Guotao,XU Yun,YANG Zhenzhou,et al.Numerical simulation considering the impact of proppant and its embedment degree on fracture flow conductivity[J].Natural Gas Industry,2013,33(5):65-68.
    [11] 赵金洲,李志强,胡永全,等.考虑页岩储层微观渗流的压裂产能数值模拟[J].天然气工业,2015,35(6):53-58. ZHAO Jinzhou,LI Zhiqiang,HU Yongquan,et al.Numerical simulation of productivity after fracturing with consideration to micro-seepage in shale reservoirs[J].Natural Gas Industry,2015,35(6):53-58.
    [12] 杨正明,张松,张训华,等.气井压后稳态产能公式和压裂数值模拟研究[J].天然气工业,2003,23(4):74-76. YANG Zhengming,ZHANG Song,ZHANG Xunhua,et al.The steady-state productivity formula after fracturing for gas wells and fracturing numerical simulation[J].Natural Gas Industry,2003,23(4):74-76.
    [13]

    DRANCHUK P M,ABOU-KASSEM H.Calculation of Z factors for natural gases using equations of state[J].Journal of Canadian Petroleum Technology,1975,14(3):34-36.

    [14]

    WILKE C R.A viscosity equation for gas mixtures[J].The Journal of Chemical Physics,1950,18(4):517-519.

    [15]

    COOK D,DOWNING K,BAYER S,et al.Unconventional-asset-development work flow in the Eagle Ford Shale[R].SPE 168973,2014.

    [16] 张建国,杜殿发,侯健,等.油气层渗流力学[M].东营:石油大学出版社,1998:27-29. ZHANG Jianguo,DU Dianfa,HOU Jian,et al.Reservoir seepage mechanics[M].Dongying:Petroleum University Press,1998:27-29.
    [17]

    MEYER B R,BAZAN L W.A discrete fracture network model for hydraulically induced fractures-theory,parametric and case studies[R].SPE 140514,2011.

  • 期刊类型引用(2)

    1. 刘承婷,胡传峰,王智刚,董佩鑫,彭占刚,管恩东. 通道压裂支撑剂缝内分布规律研究. 河南科学. 2024(01): 8-15 . 百度学术
    2. 戴一凡,侯冰,廖志豪. 基于相场法的深层干热岩储层水力压裂模拟研究. 石油钻探技术. 2024(02): 229-235 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  8761
  • HTML全文浏览量:  98
  • PDF下载量:  13475
  • 被引次数: 4
出版历程
  • 收稿日期:  2016-08-09
  • 修回日期:  2016-10-13
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回