Numerical Simulation Study on the Complex Network Fractures of Stratified Shale Gas Reservoirs
-
摘要: 在考虑天然裂缝的条件下,为了更好地对层理性页岩气储层的复杂网络裂缝进行数值模拟,采用模拟非连续介质的通用离散元程序(UDEC),基于渗流-应力耦合数值算法,建立了人工水力裂缝与天然裂缝相互作用的网络裂缝数值计算模型,并利用该模型分析了水力裂缝长度、天然裂缝倾角、内摩擦角及施工净压力对缝网扩展的影响。结果表明:水力裂缝从近井筒处裂缝尖端起裂扩展,并沿着天然裂缝的走向发生剪切破坏,且随水力裂缝长度增长,天然裂缝网络连通面积增大;天然裂缝倾角较大,形成复杂缝或网络缝的概率也相对较大;天然裂缝内摩擦角越小,天然裂缝连通面积越大,越易形成复杂网络裂缝;水平地应力差在一定范围内,净压力系数越大,裂缝的扩展形态越复杂,相邻裂缝的尖端越易连通形成网络裂缝。数值模拟研究结果可为进一步认识远井地带页岩气压裂裂缝扩展机理提供指导。Abstract: To perform the numerical simulation of complex network fractures in stratified shale gas reservoirs with natural fractures, a numerical model for network fractures was set up to determine interactions between hydraulic fractures and natural fractures by using universal distinct element code (UDEC) of non-continuous medium simulation based on numerical algorithms of seepage-stress coupling. The model was used to analyze the effect of the hydraulic fracture length, the natural fracture dip angle, the internal friction angle and the net treatment pressures on fracture network extension. The results showed that hydraulic fractures extend from the fracture tip near the well bore, and they experience shear failure along the strike of natural fractures. In the process, the connected area of natural fracture network would increase with the increases of hydraulic fractures length. It is more likely to form complex fractures or network fractures in the case of relatively large natural fracture dip angles. When the internal friction angle of the natural fractures is reduced, the connected area of natural fractures will increase and it is easier to form complex network fractures. Under a certain range of horizontal stress, fracture growth patterns would become more complex and it would be easier for tips near fractures to form network fractures as net pressure coefficients increase. Numerical simulation results could provide guidance for further understanding on shale gas fracturing fracture extension mechanism in areas away from wells.
-
Keywords:
- shale gas /
- fracturing /
- numerical simulation /
- discrete element /
- geometric model /
- natural fracture /
- internal friction angle
-
-
[1] 吴奇,胥云,王腾飞,等.增产改造理念的重大变革:体积改造技术概论[J].天然气工业,2011,31(4):7-12,16.WU Qi,XU Yun,WANG Tengfei,et al.The revolution of reservoir stimulation:an introduction of volume fracturing[J].Natural Gas Industry,2011,31(4):7-12,16. [2] JARIPATKE O A,CHONG K K,GRIESER W V,et al.A completions roadmap to shale-play development:a review of successful approaches toward shale-play stimulation in the last two decades[R].SPE 130369,2010.
[3] 王欢,廖新维,赵晓亮,等.非常规油气藏储层体积改造模拟技术研究进展[J].特种油气藏,2014,21(2):8-15.WANG Huan,LIAO Xinwei,ZHAO Xiaoliang,et al.The progress of reservoir stimulation technology in unconventional oil and gas reservoir[J].Special OilGas Reservoirs,2014,21(2):8-15. [4] 衡帅,杨春和,郭印同,等.层理对页岩水力裂缝扩展的影响研究[J].岩石力学与工程学报,2015,34(2):228-237.HENG Shuai,YANG Chunhe,GUO Yintong,et al.Influence of bedding planes on hydraulic fracture propagation in shale formations[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(2):228-237. [5] 蒋廷学,贾长贵,王海涛,等.页岩气网络压裂设计方法研究[J].石油钻探技术,2011,39(3):36-40.JIANG Tingxue,JIA Changgui,WANG Haitao,et al.Study on network fracturing design method in shale gas[J].Petroleum Drilling Techniques,2011,39(3):36-40. [6] 刘雨,艾池.多级压裂诱导应力作用下天然裂缝开启规律研究[J].石油钻探技术,2015,43(1):20-26.LIU Yu,AI Chi.Opening of natural fractures under induced stress inmulti-stage fracturing[J].Petroleum Drilling Techniques,2015,43(1):20-26. [7] 蒋廷学.页岩油气水平井压裂裂缝复杂性指数研究及应用展望[J].石油钻探技术,2013,41(2):7-12.JIANG Tingxue.The fracture complexity index of horizontal wells in shale oil and gas reservoirs[J].Petroleum Drilling Techniques,2013,41(2):7-12. [8] BLANTON T L.Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs[R].SPE 15261,1986.
[9] DERSHOWITZ W S,COTTRELL M G,LIM D H,et al.A discrete fracture network approach for evaluation of hydraulic fracture stimulation of naturally fractured reservoirs[R].ARMA10-475,2010.
[10] RIAHI A,DAMJANAC B.Numerical study of the interaction between injection and the discrete fracture network in enhanced geothermal reservoirs[R].ARMA-2013-333,2013.
[11] COTTRELL M,HOSSEINPOUR H,DERSHOWITZ W.Rapid discrete fracture analysis of hydraulic fracture development in naturally fractured reservoirs[R].SPE 168843,2013.
[12] McCLURE M,BABAZADEH M,SHIOZAWA S,et al.Fully coupled hydromechanical simulation of hydraulic fracturing in three-dimensional discrete fracture networks[R].SPE 173354,2015.
[13] NAGEL N B,SANCHEZ-NAGEL M A,GARCIA X,et al.A numerical evaluation of the geomechanical interactions between a hydraulic fracture stimulation and a natural fracture system[R].ARMA-2012-287,2012.
[14] NAGEL N B,SANCHEZ-NAGEL M,LEE B,et al.Hydraulic fracturing optimization for unconventional reservoirs-the critical role of the mechanical properties of the natural fracture network[R].SPE 161934,2012.
[15] Itasca Consulting Group Inc.Universal distinct element code user’s guide[M].4th ed.Minneapolis:Itasca Consulting Group Inc,2000.
[16] CUNDALL P A,HART R D.Analysis of block test No.1.inelastic rock mass behavior:phase 2-a characterization of joint behavior (final report)[R].[S.l.]:[s.n.],1984.
[17] BARTON N,BANDIS S,BAKHTAR K.Strength,deformation and conductivity coupling of rock joints[J].International Journal of Rock Mechanics and Mining ScienceGeomechanics Abstracts,1985,22(3):121-140.
[18] NAGEL N B,SANCHEZ M A,LEE B.Gas shale hydraulic fracturing:a numerical evaluation of the effect of geomechanical parameters[R].SPE 152192,2012.
[19] OLSON J E,TALEGHANI A D.Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures[R].SPE 119739,2009.
-
期刊类型引用(21)
1. 孙菁. C26区块优快钻井技术研究与应用. 石化技术. 2025(02): 115-117 . 百度学术
2. 肖沣峰,杨丽丽,吴家乐,冯尚江,邱士鑫,蒋官澄. 蓖麻油基环保水性聚氨酯成膜剂CWPU. 钻井液与完井液. 2025(02): 201-208 . 百度学术
3. 傅玉,蒲杨. 长裸眼水平段超深井完井液密度对井壁稳定的重要性剖析. 天然气技术与经济. 2024(06): 15-19+63 . 百度学术
4. 高斐,何云,董淼,刘云鹏,张艳. 一种新型双季铵盐页岩抑制剂的制备及其作用机理. 中国科技论文. 2023(06): 694-698 . 百度学术
5. 孙翀,周定照,王涛,邢希金,崔应中,向兴国. YH7井钻井液煤层井壁稳定技术研究及应用. 石油化工应用. 2023(05): 20-22 . 百度学术
6. 李勇尚,马诚,杨超,王晨,周成华,张珍. 聚合物微球封堵防塌剂的制备与性能评价. 精细石油化工. 2023(04): 13-17 . 百度学术
7. 赵春雨,申超,张蕾,曲学超,刘佩. 水基钻井液用CaCO_3/PAA纳米颗粒的制备及性能研究. 当代化工. 2022(04): 810-814 . 百度学术
8. 马少强. 泥页岩地层油基钻井液封堵防塌技术研究与应用. 西部探矿工程. 2022(06): 43-45 . 百度学术
9. 庄艳君,肖林通,于雷,邱春阳. 丁页10井水平井钻井液技术. 四川化工. 2022(06): 37-40 . 百度学术
10. 王伟吉. 基于石墨烯修饰的超低渗透成膜剂制备及性能评价. 石油钻探技术. 2021(01): 59-66 . 本站查看
11. 杨洪烈,可点,吴宇,周书胜,周姗姗. 一种油基钻井液用降滤失剂室内研究. 当代化工. 2020(01): 99-102+106 . 百度学术
12. 曾文韬,许明标,由福昌. 泥页岩纳—微米微孔隙封堵评价方法. 能源与环保. 2019(03): 73-76+160 . 百度学术
13. 魏然,刘成杰. BZ34-5油田复杂地层低效井治理工艺技术. 探矿工程(岩土钻掘工程). 2019(06): 47-52 . 百度学术
14. 黄熠,胜亚楠,管志川,罗鸣,李文拓,邓文彪. 莺琼盆地钻井井壁稳定性定量风险评价. 断块油气田. 2019(03): 380-384 . 百度学术
15. 林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术. 石油钻探技术. 2019(03): 113-120 . 本站查看
16. 许杰,何瑞兵,谢涛,胡进军,崔应中. 钻井液水驱动力调控技术研究. 石油化工应用. 2019(09): 44-47 . 百度学术
17. 田月昕,黄进军,郭星波,沈景原,李春霞. 纳米封堵剂Fe_3O_4性能评价与机理探究. 化学世界. 2018(07): 440-447 . 百度学术
18. 于雷,张敬辉,李公让,赵怀珍,刘天科. 低活度强抑制封堵钻井液研究与应用. 石油钻探技术. 2018(01): 44-48 . 本站查看
19. 洪国斌,陈勉,卢运虎,金衍. 川南深层页岩各向异性特征及对破裂压力的影响. 石油钻探技术. 2018(03): 78-85 . 本站查看
20. 王平全,王建龙,白杨,邓嘉丁,青胜兰. 新型水基钻井液在延长油田页岩气水平井的应用. 石油与天然气化工. 2018(05): 79-84 . 百度学术
21. 吴若宁,熊汉桥,苏晓明,朱杰,孙运昌,王启任. 成膜封堵技术室内实验研究. 油气藏评价与开发. 2018(06): 57-61+69 . 百度学术
其他类型引用(15)
计量
- 文章访问数: 4224
- HTML全文浏览量: 85
- PDF下载量: 4979
- 被引次数: 36