Horizontal Well Cement Displacement Interface Features under the Coupling of Eccentricity and Density Difference
-
摘要: 为了解水平井水平段偏心环空固井时的顶替界面特征,提高水平井水平段偏心环空固井的顶替效率,建立了考虑流态耦合与质量扩散的水平井水平段三维动态顶替数学模型,对水泥浆顶替隔离液过程中,偏心度和密度差耦合条件下的顶替界面形态进行了数值模拟。数值模拟结果表明:偏心度增大,偏心效应增强,顶替界面高边指进趋势增强;正密度差增大,浮力效应增强,顶替界面低边指进趋势增强;偏心度和密度差合适的耦合可使偏心效应和浮力效应达到临界平衡状态,此时顶替界面形态相对稳定且界面长度无明显增长,顶替效率最高。模拟结果为水平井水平段偏心环空固井提高顶替效率提供了理论依据。Abstract: To understand the features of the cement displacement interface in the horizontal section of the eccentric annulus and to improve horizontal section eccentric annulus cement displacement efficiency, a three-dimensional dynamic displacement mathematical model in horizontal section was established considering flow regime coupling and mass diffusion. The cement displacement interface morphology during cement displacement of the spacers was numerically simulated considering the coupling of eccentricity and density difference. The results showed that the eccentric effect increases with the eccentricity. Further, the fingering trend of high-side displacement interface was enhanced. When the positive density difference increased, the buoyancy effect and consequently the fingering trend of the low-side displacement interface were reinforced. Determining a suitable eccentricity and density difference coupling allowed a critical equilibrium state between the eccentric effect and buoyancy effect. Under these conditions, the displacement interface morphology was relatively stable; the interface length appeared to not significantly increase, and the displacement efficiency reached the maximum value. The simulation results could provide theoretical bases for improving the cement displacement efficiency of horizontal section eccentric annulus.
-
Keywords:
- horizontal well /
- cementing /
- eccentricity /
- density /
- displacement interface /
- displacement efficiency /
- numerical simulation
-
-
[1] 陈家琅,黄匡道,刘永建,等.定向井固井注水泥顶替效率研究[J].石油学报,1990,11(3):98-105.CHEN Jialang,HUANG Kuangdao,LIU Yongjian,et al.Displacement efficiency of cementing in directional wells[J].Acta Petrolei Sinica,1990,11(3):98-105. [2] 万发明,吴广兴,高大勇.小井眼固井顶替效率研究[J].石油学报,2000,21(5):72-76.WAN Faming,WU Guangxing,GAO Dayong.Experimental investigation on cementing displacement efficiency of slimhole well[J].Acta Petrolei Sinica,2000,21(5):72-76. [3] 丁士东,张卫东.国内外防气窜固井技术[J].石油钻探技术,2002,30(5):35-38.DING Shidong,ZHANG Weidong.Domesticoversea cementing techniques of gas-channeling prevention[J].Petroleum Drilling Techniques,2002,30(5):35-38. [4] 丁士东.塔河油田紊流、塞流复合顶替固井技术[J].石油钻采工艺,2002,24(1):20-22.DING Shidong.Combination displacement cementing of turbulent and plug flow in Tahe Oilfield[J].Oil DrillingProduction Technology,2002,24(1):20-22. [5] 李早元,杨绪华,郭小阳,等.固井前钻井液地面调整及前置液紊流低返速顶替固井技术[J].天然气工业,2005,25(1):93-95.LI Zaoyuan,YANG Xuhua,GUO Xiaoyang,et al.Cementing techniques of ground adjusting drilling fluid properties before cementing and displacing mud by turbulent pre-flush at low return velocity[J].Natural Gas Industry,2005,25(1):93-95. [6] 李洪乾.螺旋套管扶正器诱导环空流场的数值模拟[J].石油钻探技术,2012,40(2):25-29.LI Hongqian.Numerical simulation on the annular flow induced by spiral casing centralizer[J].Petroleum Drilling Techniques,2012,40(2):25-29. [7] 舒秋贵.油气井固井注水泥顶替理论与技术综述[J].西部探矿工程,2005,17(12):85-87.SHU Qiugui.Review on oil and gas well cementing displacement theory and technology[J].West-China Exploration Engineering,2005,17(12):85-87. [8] 王少平,曾扬兵,沈孟育,等.用RNG k-ε模式数值模拟180°弯道内的湍流分离流动[J].力学学报,1996,28(3):257-263.WANG Shaoping,ZENG Yangbing,SHEN Mengyu,et al.Numerical calculation of turbulent separated flows in 180 deg duct with RNG k-ε turbulence model[J].Acta Mechanica Sinica,1996,28(3):257-263. [9] 王斌斌,王瑞和,步玉环.不同流态下水泥浆环空顶替的数值模拟研究[J].钻井液与完井液,2010,27(3):76-78.WANG Binbin,WANG Ruihe,BU Yuhuan.Numerical simulation on cementing displacement in different flow patterns[J].Drilling FluidCompletion Fluid,2010,27(3):76-78. [10] 张松杰,薛亮,汪志明,等.密度差对水平井固井顶替影响规律数值模拟研究[J].钻采工艺,2012,35(6):15-17.ZHANG Songjie,XUE Liang,WANG Zhiming,et al.Numerical simulation study on the influence law of density difference on cementing displacement interface in the horizontal well[J].DrillingProduction Technology,2012,35(6):15-17. [11] 温正,石良辰,任毅如.FLUENT流体计算应用教程[M].北京:清华大学出版社,2009:81-82.WEN Zheng,SHI Liangchen,REN Yiru.FLUENT fluid computing applications tutorial[M].Beijing:Tsinghua University Press,2009:81-82. [12] MENTER F R,LANGTRY R B,LIKKI S R,et al.A correlation-based transition model using local variables:part 1:model formulation[J].Journal of Turbomachinery,2006,128(3):413-422.
[13] 汪志明,崔海清,何光渝.流体力学[M].北京:石油工业出版社,2006:144-146.WANG Zhiming,CUI Haiqing,HE Guangyu.Fluid mechanics[M].Beijing:Petroleum Industry Press,2006:144-146. [14] 王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004:210-211.WANG Fujun.Computational fluid dynamics analysis:software principles and applications of CFD[M].Beijing:Tsinghua University Press,2004:210-211. -
期刊类型引用(5)
1. 杨顺辉,何汉平,张智,窦雪锋,银熙炉. 多功能环空带压地面诊断方法及装置研究. 西南石油大学学报(自然科学版). 2023(05): 131-139 . 百度学术
2. 李录兵,李兵,罗凌燕,成武斌,施闯. 基于大数据分析的智能油气井筒预警分析系统建设方案研究. 中国石油和化工标准与质量. 2021(06): 21-23+25 . 百度学术
3. 罗洋. 气井管柱完整性技术研究进展与展望. 化学工程与装备. 2021(06): 231-233 . 百度学术
4. 张波,罗方伟,孙秉才,谢俊峰,胥志雄,廖华林. 深层油气井井筒完整性检测方法. 石油钻探技术. 2021(05): 114-120 . 本站查看
5. 张绍辉,张成明,潘若生,耿笑然,柏明星. CO_2驱注入井井筒完整性分析与风险评价. 西安石油大学学报(自然科学版). 2018(06): 90-95+123 . 百度学术
其他类型引用(9)
计量
- 文章访问数: 3976
- HTML全文浏览量: 85
- PDF下载量: 4336
- 被引次数: 14