超临界CO2钻井井筒水合物形成区域预测

孙小辉, 孙宝江, 王志远, 王金堂

孙小辉, 孙宝江, 王志远, 王金堂. 超临界CO2钻井井筒水合物形成区域预测[J]. 石油钻探技术, 2015, 43(6): 13-19. DOI: 10.11911/syztjs.201506003
引用本文: 孙小辉, 孙宝江, 王志远, 王金堂. 超临界CO2钻井井筒水合物形成区域预测[J]. 石油钻探技术, 2015, 43(6): 13-19. DOI: 10.11911/syztjs.201506003
Sun Xiaohui, Sun Baojiang, Wang Zhiyuan, Wang Jintang. The Prediction of Hydrate Formation Regions in the Wellbore during Supercritical Carbon Dioxide Drilling[J]. Petroleum Drilling Techniques, 2015, 43(6): 13-19. DOI: 10.11911/syztjs.201506003
Citation: Sun Xiaohui, Sun Baojiang, Wang Zhiyuan, Wang Jintang. The Prediction of Hydrate Formation Regions in the Wellbore during Supercritical Carbon Dioxide Drilling[J]. Petroleum Drilling Techniques, 2015, 43(6): 13-19. DOI: 10.11911/syztjs.201506003

超临界CO2钻井井筒水合物形成区域预测

基金项目: 

国家自然科学"页岩气储层超临界二氧化碳压裂裂缝中支撑剂输送机理研究"(编号:51104172)、国家自然科学"非常规天然气储层超临界二氧化碳压裂工程基础研究"(编号:U1262202)和中央高校基本科研业务费专项资金(编号:15CX06020A)联合资助。

详细信息
    作者简介:

    孙小辉(1990—),男,山东东营人,2013年毕业于中国石油大学(华东)石油工程专业,在读硕士研究生,主要从事油气井工程与流体力学方面的研究。

  • 中图分类号: TE21;TE249

The Prediction of Hydrate Formation Regions in the Wellbore during Supercritical Carbon Dioxide Drilling

  • 摘要: 为了保证超临界CO2钻井安全并快速钻进,需要解决井筒内水合物生成的问题。为此,在分析水合物形成机理的基础上,建立了超临界CO2钻井井筒水合物形成区域预测模型,并给出了模型的定解条件和数值求解方法。通过设计算例进行了计算分析,结果表明:环空内水合物形成区域的临界井深,随注入温度或水合物抑制剂加量增大呈二次多项式非线性下降;随井口回压增大先呈对数函数增大、后呈二次多项式关系增大,增大的幅度逐渐变小。分析结果可为超临界CO2钻井防治水合物形成提供理论参考。
    Abstract: In order to improve the safety and efficiency of SC-CO2 drilling (supercritical carbon dioxide drilling), it is necessary to deal with the formation of CO2 hydrate in the wellbores. Based on the hydrate formation mechanism analysis, a model for predicting the formation region of CO2 hydrate in the wellbore was built up, and the definite conditions and numerical resolution methods were proposed. Computational analysis was carried out by designing examples. It was shown that hydrate formation in the annulus decreased non-linearly in quadratic polynomial relations with the increasing of injection temperature or inhibitor dosage. And with the increasing of wellhead back pressure, hydrate formation increased with increasing rate reducing gradually (first in logarithmic relations and then in quadratic polynomial relations). The research achievements could provide a theoretical reference for hydrate prevention during SC-CO2 drilling.
  • [1]

    Al-Adwani F A,Langlinais J,Hughes R G.Modeling of an underbalanced drilling operation utilizing supercritical carbon dioxide[R].SPE 114050,2008.

    [2] 霍洪俊,王瑞和,倪红坚,等.超临界二氧化碳在水平井钻井中的携岩规律研究[J].石油钻探技术,2014,42(2):12-17. Huo Hongjun,Wang Ruihe,Ni Hongjian,et al.Cuttings carrying pattern of supercritical carbon dioxide in horizontal wells[J].Petroleum Drilling Techniques,2014,42(2):12-17.
    [3]

    Kolle J J.Coiled-tubing drilling with supercritical carbon dioxide[R].SPE 65534,2000.

    [4] 邱正松,谢彬强,王在明,等.超临界二氧化碳钻井流体关键技术研究[J].石油钻探技术,2012,40(2):1-7. Qiu Zhengsong,Xie Binqiang,Wang Zaiming,et al.Key technology on drilling fliud of supercritical carbon dioxide[J].Petroleum Drilling Techniques,2012,40(2):1-7.
    [5]

    van der Waals J H,Platteeuw J C.Clathrate solutions[J].Advances in Chemical Physics,1959,2:1-57.

    [6]

    Parrlsh W R,Prausnltz J M.Dissociation pressures of gas hydrates formed by gas mixtures[J].IEC Chemical Process Design and Development,1972,11(1):26-33.

    [7]

    Ng Heng-Joo,Robinson D B.Hydrate formation in systems containing methane,ethane,propane,carbon dioxide or hydrogen sulfide in the presence of methanol[J].Fluid Phase Equilibria,1985,21(1/2):145-155.

    [8]

    Holder G D,Angert P F.Simulation of gas production from a reservoir containing both gas hydrates and free natural gas[R].SPE 11105,1982.

    [9]

    Englezos P.Computation of the incipient equilibrium carbon dioxide hydrate formation conditions in aqueous electrolyte solutions[J].Industrial Engineering Chemistry Research,1992,31(9):2232-2237.

    [10]

    Bishnoi P R,Dholabhai P D.Equilibrium conditions for hydrate formation for a ternary mixture of methane,propane and carbon dioxide,and a natural gas mixture in the presence of electrolytes and methanol[J].Fluid Phase Equilibria,1999,158/159/160:821-827.

    [11]

    Nasrifar K,Moshfeghian M.Computation of equilibrium hydrate formation temperature for CO2 and hydrocarbon gases containing CO2 in the presence of an alcohol,electrolytes and their mixtures[J].Journal of Petroleum Science and Engineering,2000,26(1/2/3/4):143-150.

    [12] 宫智武,张亮,程海清,等.海底天然气水合物分解对海洋钻井安全的影响[J].石油钻探技术,2015,43(4):19-24. Gong Zhiwu,Zhang Liang,Cheng Haiqing,et al.The influence of subsea natural gas hydrate dissociation on the safety of offshore drilling[J].Petroleum Drilling Techniques,2015,43(4):19-24.
    [13] 宋中华,张士诚,王腾飞,等.塔里木油田高压气井井下节流防治水合物技术[J].石油钻探技术,2014,42(2):91-96. Song Zhonghua,Zhang Shicheng,Wang Tengfei,et al.Downhole throttling technology for gas hydrate prevention in deep gas wells of Tarim Oilfield[J].Petroleum Drilling Techniques,2014,42(2):91-96.
    [14] 王海柱,沈忠厚,李根生.超临界CO2钻井井筒压力温度耦合计算[J].石油勘探与开发,2011,38(1):97-102. Wang Haizhu,Shen Zhonghou,Li Gensheng.Wellbore temperature and pressure coupling calculation of drilling with supercritical carbon dioxide[J].Petroleum Exploration and Development,2011,38(1):97-102.
    [15]

    Hasan A R,Kabir C S.Heat transfer during two-phase flow in wellbores:part I:formation temperature[R].SPE 22866,1991.

    [16]

    Wang Weihua,Wen Hao,He Xianfeng,et al.Design and development of database system on the physical properties and phase equilibria of gas hydrates[J].Computers and Applied Chemistry,2005,22(6):35-40.

    [17]

    Patwardhan V S,Kumar A.A unified approach for prediction of thermodynamic properties of aqueous mixed-electrolyte solutions:part I:vapor pressure and heat of vaporization[J].AIChE Journal,1986,32(9):1419-1428.

    [18] 查丽,梁德青,何松.CO2水合物在电解质溶液中的相平衡预测[J].工程热物理学报,2012,33(7):1105-1108. Zha Li,Liang Deqing,He Song.Prediction of CO2 hydrate phase equilibria in aqueous electrolytes solutions[J].Journal of Engineering Thermophysics,2012,33(7):1105-1108.
    [19]

    Adisasmito S,Frank R J,Sloan E D Jr.Hydrates of carbon dioxide and methane mixtures[J].Journal of Chemical and Engineering Data,1991,36(1):68-71.

    [20]

    Vlahakis J G,Chen H S,Suawandi M S,et al.The growth rate of ice crystals:the properties of carbon dioxide hydrate,a review of properties of 51 gas hydrates[M].US Department of the Interior,1972.

    [21]

    Nasrifar K,Moshfeghian M.A model for prediction of gas hydrate formation conditions in aqueous solutions containing electrolytes and/or alcohol[J].The Journal of Chemical Thermodynamics,2001,33(9):999-1014.

    [22]

    Dholabhai P D,Kalogerakis N,Bishnoi P R.Equilibrium conditions for carbon dioxide hydrate formation in aqueous electrolyte solutions[J].Journal of Chemical and Engineering Data,1993,38(4):650-654.

    [23]

    Bozzo A T,Hsiao-Sheng C,Kass J R,et al.The properties of the hydrates of chlorine and carbon dioxide[J].Desalination,1975,16(3):303-320.

    [24]

    Daugherty R L,Franzini J B,Finnemore E J,et al.Fluid mechanics with engineering applications[M].New York:McGraw-Hill,1985.

    [25]

    Span R,Wagner W.A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1 100 K at pressures up to 800 MPa[J].Journal of Physical and Chemical Reference Data,1996,25(6):1509-1596.

    [26]

    Vesovic V,Wakeham W A,Olchowy G A,et al.The transport properties of carbon dioxide[J].Journal of Physical and Chemical Reference Data,1990,19(3):763-808.

    [27]

    Wang Zhiyuan,Sun Baojiang,Wang Jintang,et al.Experimental study on the friction coefficient of supercritical carbon dioxide in pipes[J].International Journal of Greenhouse Gas Control,2014,25(6):151-161.

    [28]

    Bruch A,Bontemps A,Colasson S.Experimental investigation of heat transfer of supercritical carbon dioxide flowing in a cooled vertical tube[J].International Journal of Heat and Mass Transfer,2009,52(11/12):2589-2598.

    [29] 何淼,柳贡慧,李军,等.多相流全瞬态温度压力场耦合模型求解及分析[J].石油钻探技术,2015,43(2):25-32. He Miao,Liu Gonghui,Li Jun,et al.Solution and analysis of fully transient temperature and pressure coupling model for multiphase flow[J].Petroleum Drilling Techniques,2015,43(2):25-32.
  • 期刊类型引用(25)

    1. 黄少豪,王军平,王震宇,张卓,于贵健. 塔里木盆地宿探1井大井眼钻井提速技术探讨. 矿业装备. 2025(01): 7-10 . 百度学术
    2. 史配铭,刘召友,荣芳,武宏超,米博超,念富龙. 超深探井荔参1井钻井关键技术. 石油工业技术监督. 2024(02): 50-55 . 百度学术
    3. 蔡明杰,罗鑫,陈力力,贺明敏,彭浩,何兵. 万米深井SDCK1井超大尺寸井眼钻井技术. 石油钻探技术. 2024(02): 87-92 . 本站查看
    4. 王鸿远. 预弯曲动力学防斜打快技术在塔里木盆地台前区应用研究. 当代化工研究. 2024(15): 111-113 . 百度学术
    5. 王建宁,周英操,赵记臣,耿建华,乔建锋. 哈萨克斯坦KOA油田钻井减振提速技术研究. 石油机械. 2023(03): 56-60+67 . 百度学术
    6. 丁红,万教育,徐广飞,张宏阜,李俊胜,易超,赵益书. 满深区块超深水平井轨迹控制与提速技术. 西部探矿工程. 2023(03): 60-63 . 百度学术
    7. 李建军,陈先贵,于兴东. 一种新型聚合物降滤失剂在塔东超深井中的应用. 西部探矿工程. 2023(06): 51-54+59 . 百度学术
    8. 徐鲲,陶林,李文龙,李林波,汤柏松,邸毅峰,王旭. 渤海油田变质岩潜山油藏钻井关键技术. 石油钻探技术. 2023(03): 16-21 . 本站查看
    9. 马英文,杨进,李文龙,徐鲲,谢涛,杨保健. 渤中26-6油田发现井钻井设计与施工. 石油钻探技术. 2023(03): 9-15 . 本站查看
    10. 熊浪豪,巢世伟,柏尚宇,陈君,范乘浪,崔建峰. E Zhanbyrshy-3井钻井实践及技术难点分析. 内蒙古石油化工. 2023(05): 63-66+120 . 百度学术
    11. 路保平,陈会年. 《石油钻探技术》50年与未来发展建议. 石油钻探技术. 2023(04): 3-10 . 本站查看
    12. 田辉,仇恒彬,董广华. 预弯曲钟摆钻具防斜打快技术在柯坪高陡构造地层的应用. 西部探矿工程. 2022(01): 39-43 . 百度学术
    13. 宋先知,裴志君,王潘涛,张宫凌燕,叶山林. 基于支持向量机回归的机械钻速智能预测. 新疆石油天然气. 2022(01): 14-20 . 百度学术
    14. 王文刚,胡大梁,欧彪,房舟,刘磊. 井研–犍为地区缝洞型复杂地层钻井关键技术. 石油钻探技术. 2022(02): 58-63 . 本站查看
    15. 喻化民,薛莉,吴红玲,李海彪,冯丹,杨冀平,鲁娜. 满深区块深井强封堵钻井液技术. 钻井液与完井液. 2022(02): 171-179 . 百度学术
    16. 朱金智,杨学文,刘洪涛,杨成新,张绍俊,罗春芝. 塔河南岸跃满区块三叠系防塌钻井液研究与应用. 钻井液与完井液. 2022(03): 319-326 . 百度学术
    17. 赵向阳,赵聪,王鹏,梁晓阳,杨谋. 超深井井筒温度数值模型与解析模型计算精度对比研究. 石油钻探技术. 2022(04): 69-75 . 本站查看
    18. 王建云,韩涛,赵宽心,张立军,席宝滨,叶翔. 塔深5井超深层钻井关键技术. 石油钻探技术. 2022(05): 27-33 . 本站查看
    19. 王伟吉,高伟,范胜,宣扬,董晓强. 新型非磺化环保低摩阻钻井液. 钻井液与完井液. 2022(04): 459-465 . 百度学术
    20. 潘冠昌,杨斌,张浩,常坤,冯云辉. 超深层碳酸盐岩裂缝面形态与摩擦因数研究. 断块油气田. 2022(06): 794-799 . 百度学术
    21. 韩成福,张建卿,胡祖彪,王清臣,朱明明,王浩. 风险探井驿探1井钻井技术实践. 石油钻采工艺. 2022(06): 678-683 . 百度学术
    22. 吴柏志,张怀兵. 满深1井碳酸盐岩地层自愈合水泥浆固井技术. 石油钻探技术. 2021(01): 67-73 . 本站查看
    23. 钟汉毅,高鑫,邱正松,林永学,金军斌,汤志川,赵欣,李佳. 环保型β-环糊精聚合物微球高温降滤失作用机理. 石油学报. 2021(08): 1091-1102+1112 . 百度学术
    24. 舒义勇,孙俊,曾东,徐思旭,周华安,席云飞. 塔里木油田跃满西区块高温恒流变钻井液研究与现场试验. 石油钻探技术. 2021(05): 39-45 . 本站查看
    25. 王九龙,李翔,董宇,杨斌號. 塔里木盆地大北1401井目的层定向钻完井关键技术. 西部探矿工程. 2021(11): 58-60 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  2225
  • HTML全文浏览量:  70
  • PDF下载量:  2785
  • 被引次数: 28
出版历程
  • 收稿日期:  2015-03-09
  • 修回日期:  2015-10-19
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回