Casing Optimization for Delaying Casing Damage in the Datum Bed of the Daqing Oilfield
-
摘要: 大庆油田部分区域集中出现标准层套管剪切损坏,虽已采用标准层不固井工艺延缓套管损坏,但除此之外,套管壁厚、钢级等参数对标准层套管剪切损坏的临界条件也有影响。为此,考虑套管和地层弹塑性力学特征,针对标准层不固井的工程条件,应用考虑大变形后应力平衡状态的拉格朗日格式有限元方程,提出了地层整体移动剪切套管过程的三维有限元计算方法。考虑套管变形和套管断裂的2种失效条件,计算并对比不同壁厚和钢级套管失效的临界值。结果表明:考虑套管断裂的地层剪切套管临界滑移量明显小于考虑套管变形的临界滑移量;同规格、同钢级套管损坏的临界滑移量随套管壁厚增大呈线性减小,随其延伸率增大近似呈线性增大。因此,在满足强度校核的前提下,大庆油田标准层宜采用低钢级小壁厚套管以延缓套管损坏。Abstract: Casing shear damage appeared frequently in the datum bed in the Daqing Oilfield, and an uncementing technology has been adopted to delay casing damage. However, the critical value of marker casing shear damage is related to wall thickness and steel grade of the casing. An analysis was conducted on the elastoplastic mechanical characteristics of casings and formations, and a three-dimensional finite element calculation method was proposed, based on the engineering conditions of uncementing markers, for integral formation movement and shearing casing by using the Lagrange finite element equation, which takes account of the stress equilibrium state after large deformation. Critical values of the casing failure with different wall thickness and steel grade were calculated and compared at two failure conditions, i.e. the casing deformation and casing fracturing. It is shown that the critical slippage of casing with formation shear when the casing was fracturing is much smaller than that of casing deformation. The critical slippage of casing that have the same size and steel grade decreases linearly with the increase of wall thickness, but increases linearly with the increase of elongation rate. To sum up, the casing with small wall thickness and low steel grade should be adopted in datum bed of the Daqing Oilfield to delay casing damage on the condition that strength checks are satisfied.
-
Keywords:
- datum bed /
- casing damage /
- finite element method /
- geometric model /
- Daqing Oilfield
-
-
[1] 吴庆超.南一区西部区块套损治理对策及效果分析[D].大庆:东北石油大学,2012. Wu Qingchao.Casing failure preventive measures and efficiency analysis of western Nan1 Area in Saertu Oilfield[D].Daqing:Northeast Petroleum University,2012. [2] 刘合,刘建东,卓胜广,等.大庆油田嫩二成片套损的地质控制因素[J].石油学报,2006,27(5):135-138. Liu He,Liu Jiandong,Zhuo Shengguang,et al.Geological factors for controlling damage of batch casing in the memberⅡof Nenjiang Formation in Daqing Oilfield[J].Acta Petrolei Sinica,2006,27(5):135-138. [3] 艾池.套管损坏机理及理论模型与模拟计算[D].大庆:大庆石油学院,2003. Ai Chi.Mechanism and theoretic models of casing failure and numerical calculation with them[D].Daqing:Daqing Petroleum Institute,2003. [4] 刘建中,周胜民,李自平,等.油田套管损坏的压力与压差联合作用机制[J].石油勘探与开发,2001,28(2):97-99. Liu Jianzhong,Zhou Shengmin,Li Ziping,et al.The combined action mechanism of the pressure and pressure differential in casing damage[J].Petroleum Exploration and Development,2001,28(2):97-99. [5] Han H,Khan S,Ansari S A,et al.Prediction of injection induced formation shear[R].SPE 151840,2012.
[6] 阙源.套损井综合治理保障大庆油田可持续发展研究[D].北京:中国地质大学(北京),2009. Que Yuan.Research on comprehensive harness of casing damaged well to protect the sustainable development of Daqing Oilfield[D].Beijing:China University of Geosciences(Beijing),2009. [7] 李士斌,刘广维,姚辉阳,等.控制水泥面工具关闭球运动的数学模型及应用[J].断块油气田,2014,21(2):242-244. Li Shibin,Liu Guangwei,Yao Huiyang,et al.Mathematical model and its application of moving ball of cement surface controlling tool[J].Fault-Block Oil Gas Field,2014,21(2):242-244. [8] 张卫东,杨勇,路智勇,等.延缓断层处套管损坏的方法[J].断块油气田,2012,19(6):800-802. Zhang Weidong,Yang Yong,Lu Zhiyong,et al.Method of delaying casing damage at the fault[J].Fault-Block Oil Gas Field,2012,19(6):800-802. [9] 李秋杰.套管先期保护技术探讨[J].西部探矿工程,2011,23(2):114-117. Li Qiujie.A discussion of initial casing protection technology[J].West-China Exploration Engineering,2011,23(2):114-117. [10] 郭金荣.喇嘛甸油田喇7-30套损区更新井钻井地质设计难点及对策[J].西部探矿工程,2011,23(9):95-96. Guo Jinrong.Geological design difficulties and strategy of renewed well drilling in casing damage zone in La 7-30 Bolck Lamadian Oilfield[J].West-China Exploration Engineering,2011,23(9):95-96. [11] 付胜利,高德利.可膨胀管膨胀过程三维有限元数值模拟[J].西安石油大学学报:自然科学版,2006,21(1):54-57. Fu Shengli,Gao Deli.Three-D FEM numerical simulation of the expansion process of expandable tube[J].Journal of Xi’an Shiyou University:Natural Science Edition,2006,21(1):54-57. [12] API Spec 5CT—2011 套管和油管规范[S]. API Spec 5CT—2011 Specification for casing and tubing[S]. [13] Maurice B Dusseault,Michael S Bruno,John Barrera.Casing shear:causes,cases,cures[R].SPE 72060,2001.
[14] 吴恩成,闫铁.大庆油田嫩二底标准层化石层引起套管损坏机理分析[J].大庆石油学院学报,2007,31(2):38-41. Wu Encheng,Yan Tie.Analysis of casing damage mechanism in fossil formation in N2 index bed of Daqing Oilfield[J].Journal of Daqing Petroleum Institute,2007,31(2):38-41. [15] 高惠临.管线钢与管线钢管[M].北京:中国石化出版社,2011:94-96. Gao Huilin.Pipeline steel and steel pipe[M].Beijing:China Petrochemical Press,2011:94-96. [16] 梁嘉顺.建筑材料[M].西安:陕西科学技术出版社,1988:130-136. Liang Jiashun.Architecture material[M].Xi’an:Shaanxi Science and Technology Press,1988:130-136. [17] 翟晓鹏,楼一珊,周建良,等.套管径向变形可修复界限研究[J].石油钻探技术,2012,40(1):28-31. Zhai Xiaopeng,Lou Yishan,Zhou Jianliang,et al.Study of minimum repair limit for reduced casing deformation[J].Petroleum Drilling Techniques,2012,40(1):28-31. -
期刊类型引用(24)
1. 高元,李小江,刘仍光. 超高温井固井水泥浆体系研究与应用. 钻探工程. 2025(01): 109-114 . 百度学术
2. 李小江,王越洋,肖京男,魏浩光,杨睿月. 硅酸盐水泥石超高温干热环境热损伤规律. 钻井液与完井液. 2025(02): 247-254 . 百度学术
3. 李盼盼,李明泽,徐萍,白永泰,吕宝玉,王璐. 石英砂细度和掺量对G级油井水泥浆体系性能的影响. 水泥. 2024(01): 14-17 . 百度学术
4. 肖京男,李小江,周仕明,魏浩光,杨红歧. 干热岩超高温防衰退水泥浆体系及应用. 钻井液与完井液. 2024(01): 92-97 . 百度学术
5. 邱康,崔强,熊振宇,王颖,范鸿飞. 莺琼盆地高温高含CO_2环境水泥石腐蚀规律及机理研究. 海洋石油. 2024(02): 80-83 . 百度学术
6. 赵峰,曾雪玲,龙丹,古安林,张凌志,王佳,魏雪琦. 锆英石掺量对加砂油井水泥高温性能的影响研究. 水泥. 2024(07): 13-18 . 百度学术
7. 徐大伟,汪晓静,徐春虎,魏浩光,常连玉. 且深1井盐层尾管超高温高密度固井水泥浆技术. 钻井液与完井液. 2024(05): 622-629 . 百度学术
8. 赵琥,马春旭,宋维凯,田野,邹亦玮,孙超. 空心微珠低密度水泥浆在高温下的水化特性. 钻井液与完井液. 2024(05): 654-660 . 百度学术
9. 袁彬,赵清立,徐璧华,冯青豪,杨川. 南海180℃超高温CO_2环境下水泥石强度衰退机理. 材料导报. 2024(S2): 170-174 . 百度学术
10. 赵昆鹏,王涛,郭春,罗阳利,韦庭丛,梅开元,张春梅,赵峰,程小伟. 高温下赤泥与硅粉协同强化固井水泥石力学性能. 中国粉体技术. 2023(02): 74-80 . 百度学术
11. 徐小峰,宋巍,杨燕,李祥银,周岩,冯福平,韩旭,刘圣源. 页岩储层水平井固井水泥浆体系应用研究进展. 科学技术与工程. 2023(17): 7161-7173 . 百度学术
12. 党冬红,刘宁泽,王丹,梅开元,程小伟,孙兴嘉. 干热岩工况下水泥高温劣化性能的调控措施. 钻井液与完井液. 2023(03): 368-375 . 百度学术
13. 赵峰,曾雪玲,龙丹,古安林,喻庆华. 超高温固井水泥添加剂研选及工程性能评价. 钻采工艺. 2023(04): 131-136 . 百度学术
14. 杨雨,汪启龙,杨东,瞿勇,张浩,王凯鹏. 导热填料对地热井固井材料性能及结构的影响. 钻采工艺. 2022(01): 59-64 . 百度学术
15. 何立成. 胜利油田沙河街组页岩油水平井固井技术. 石油钻探技术. 2022(02): 45-50 . 本站查看
16. 侯海欧. 稠油热采井固井低密度水泥浆体系研究与应用. 中国石油和化工标准与质量. 2022(07): 111-113 . 百度学术
17. 周崇峰,费中明,李德伟,赵江波,蒋世伟,刘慧婷,徐明. 一种新型超高温固井水泥石抗强度衰退材料. 钻井液与完井液. 2022(01): 71-75 . 百度学术
18. 郤一臻,赵福金,荆京,祁国华,张勃. 山西干热岩GR1井高温固井技术研究与实践. 钻探工程. 2022(06): 42-47 . 百度学术
19. 杨仲涵,罗鸣,陈江华,许发宾,徐靖. 莺歌海盆地超高温高压井挤水泥承压堵漏技术. 石油钻探技术. 2020(03): 47-51 . 本站查看
20. 李全双,王治国,邹书强. 适用于干热岩固井抗高温高强度水泥浆体系研究. 中国石油和化工标准与质量. 2020(10): 164-167+169 . 百度学术
21. 张华,靳建洲,刘明涛,肖云峰,张晓兵,郭锦棠,张同颖. 稠油热采井抗350℃高温硅酸盐基水泥浆. 钻井液与完井液. 2020(03): 363-366 . 百度学术
22. 耿晨梓,姚晓,代丹,黎学年,姜涛,闫联国,吴学超. SiO_2晶态物性对高温水泥石力学性能的影响. 钻井液与完井液. 2020(06): 777-783 . 百度学术
23. 于永金,丁志伟,张弛,张华,郭锦棠. 抗循环温度210℃超高温固井水泥浆. 钻井液与完井液. 2019(03): 349-354 . 百度学术
24. 马志亮,郝红永,谢志涛,翟晓鹏,张瀚之. 微硅砂含量对热采井固井水泥强度影响研究. 当代化工研究. 2019(09): 72-74 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 2383
- HTML全文浏览量: 91
- PDF下载量: 2733
- 被引次数: 30