Interpretation and Application of ECS Logging Data in Shale Formations
-
摘要: 常规测井方法难以准确评价黏土、碎屑岩和碳酸盐等矿物,而ECS测井仪的晶体探测器可测量由中子源和地层矿物碰撞产生的伽马射线,因此依据地层矿物和伽马射线的对应关系,建立了ECS元素测井响应方程,利用优化反演方法确定矿物类型、计算矿物含量、骨架密度及脆性指数。利用该方法对页岩气A区块X井的ECS测井资料进行了解释,选择Si,Al,Fe,Ca,Su和K元素,反演出石英、长石、灰岩、白云岩、伊利石、绿泥石、蒙脱石、黄铁矿、云母和硬石膏等10种矿物中的6~8种及其含量,反演结果与岩心矿物分析结果具有较好的一致性,并根据矿物的含量计算出该井页岩地层的骨架密度为2.65~2.75 g/m3,脆性指数为40~60。这说明利用ECS测井资料可以评价页岩地层的矿物及含量,能据此计算页岩地层的骨架密度和脆性指数,可提供准确的评价结果,从而指导页岩地层的压裂设计与施工。Abstract: It is difficult to accurately evaluate clay minerals, including those that contain clasolite and carbonates by using conventional logging methods.The crystal detector of the ECS logger measures gamma rays produced by collision of neutron sources and the strata minerals, so the ECS element log response equation was established according to the corresponding relationship between minerals and gamma rays. The optimized inversion method was used to determine mineral types, and calculate mineral content, grain density and brittleness index. By using this method, the ECS logging data of Well X in shale gas block A was interpreted, the elements including Si, Al, Fe, Ca, Su and K were selected to determine six to eight kinds of minerals and their contents, related to 10 minerals such as quartz, feldspar, limestone, dolomite, illite, chlorite, montmorillonite, pyrite, mica and anhydrite. Eventually, the inversion results coincided well with the core mineral analysis results, the grain density of the shale formation in this well was calculated according to the contents of the minerals, which ranged from 2.65-2.75 g/m3, the brittle index is 40-60. It showed that shale formation minerals and their contents can be evaluated by using ECS logging data, and the grain density and brittleness index of shale formation can be calculated. These results could provide an accurate evaluation for shale formations and guide shale formation fracturing.
-
Keywords:
- element logging /
- logging interpretation /
- mineral /
- inversion /
- brittleness index
-
-
[1] Hertzog R,Colson L,Seeman O,et al.Geochemical logging with spectrometry tools[R].SPE 16792,1989.
[2] Harvey P K,Lofts J C,Lovell M A.Mineralogy logs: element to mineral transforms and compositional colinearity in sediments: SPWLA the 33rd Annual Logging Symposium,Houston,June 14-17,1992[C].
[3] Herron S L,Herron M M.Quantitative lithology: An application for open and cased hole spectroscopy: SPWLA the 37rd Annual Logging Symposium,New Orleans,June16-19,1996[C].
[4] Quirein J,Witkowsky J,Truax J A,et al.Integrating core data and wireline geochemical data for formation evalution and characterization of shale gas reservoirs[R].SPE 134559,2010.
[5] Herron M M,Herron S L,Grau,J A,et al.Real-time petrophysical analysis in siliciclastics form the integration of spectroscopy and triple-combo logging[R].SPE77631,2002.
[6] 雍世和,孙建孟.最优化测井解释[M].东营:石油大学出版社,1995:87-119. Yong Shihe,Sun Jianmeng.Optimization logging interpretation[M].Dongying: Petroleum University Press,1995: 87-119. [7] 肖立志.一种改进的数字测井最优化解释方法[J].石油学报,1991,12(2):40-50. Xiao Lizhi.An improved interpretation method for digital log,Acta Petrolei Sinica[J].Acta Petrolei Sinica,1991,12(2): 40-50. [8] Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4): 475-499.
[9] Buller D,Hughes S N,Market J,et al.Preophysical evaluation for enhancing hydraulic stimulation in horizontal shale gas wells[R].SPE 132990,2010.
[10] 廖东良,肖立志,张元春.基于矿物组分与断裂韧度的页岩地层脆性指数评价模型[J].石油钻探技术,2014,42(4):37-41. Liao Dongliang,Xiao Lizhi,Zhang Yuanchun.Evaluation model for shale brittleness index based on mineral content and fracture toughness[J].Petroleum Drilling Techniques,2014,42(4): 37-41. -
期刊类型引用(10)
1. 李斌,董振国,罗群. 元素俘获测井在页岩储层古沉积环境辨识中的应用. 核技术. 2024(07): 67-80 . 百度学术
2. 蒋云箭,刘惠民,柴春艳,王敏,杨东根,吴春文,陈潇. 济阳坳陷页岩油测井评价. 油气地质与采收率. 2023(01): 21-34 . 百度学术
3. 张润雪,林伯韬. 非均质超稠油疏松砂岩储层可压性评价. 新疆石油天然气. 2023(01): 57-64 . 百度学术
4. 张鉴,张成林,赵圣贤,曹埒焰,刘永旸,李沛耘,辛治国. 多元非线性矿物解释模型在页岩分析中的应用. 断块油气田. 2023(02): 222-229 . 百度学术
5. 曹东升,曾联波,吕文雅,徐翔,田鹤. 非常规油气储层脆性评价与预测方法研究进展. 石油科学通报. 2021(01): 31-45 . 百度学术
6. 欧传根,唐诚,王崇敬,梁波. 基于多元自适应回归样条的页岩密度计算模型. 录井工程. 2021(01): 1-5 . 百度学术
7. 罗发强,王志战,张元春,张俊,金拥军,廖东良. 复杂地层岩石力学参数实时求取方法——以塔里木盆地巴楚隆起为例. 科学技术与工程. 2020(17): 6842-6847 . 百度学术
8. 王世玉,孙德瑞,杜炜,耿代,白薷,王宇. 泥页岩脆性指数评价方法. 测井技术. 2020(03): 294-299 . 百度学术
9. 冷玥,赵迪斐,郭英海,李艳芳,崇璇,周道生. 页岩气储层测井评价技术研究与应用现状. 非常规油气. 2019(06): 117-123 . 百度学术
10. 黄军平,张智盛,杨占龙,黄云峰,邸俊,张丽萍. 致密岩石矿物组分含量及脆性指数多元回归定量预测. 新疆石油地质. 2016(03): 346-351 . 百度学术
其他类型引用(15)
计量
- 文章访问数: 3455
- HTML全文浏览量: 150
- PDF下载量: 4039
- 被引次数: 25