Development and Performance Evaluation of the High Temperature Resistant Polymer Fluid Loss Agent AAS
-
摘要: 深井超深井井底温度高,水泥浆滤失控制难度大。为解决这一问题,以 2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)和苯乙烯磺酸钠(SSS)为原料,以偶氮二异丁脒盐酸盐为引发剂,通过优化AMPS、AM和SSS三者的比例,合成了三元共聚耐高温降滤失剂AAS。利用红外光谱、核磁共振氢谱表征、热重和差热分析等方法评价了AAS的稳定性,并开展了水泥浆高温滤失性能评价。结果表明,AMPS、AM和SSS质量比为20:5:1时,AAS的分解温度为350℃左右;AAS加量为1.6%时,在180℃条件下水泥浆API滤失量可以控制在150 mL以下,150℃条件下滤失量为56 mL。研究表明,降滤失剂AAS能够降低水泥浆在高温下的滤失量,对水泥浆流变性、强度和稠化时间无明显影响,能满足高温固井对水泥浆的要求。Abstract: With high bottom hole temperatures in deep and ultra deep wells, there are difficulties in mud filtration control. The study on high temperature resistant polymer fluid loss agent was done in which 2-acrylamido-2-methyl propane sulfonic acid (AMPS), acrylamide (AM) and sodium styrene sulfonate (SSS) were used as raw materials and azo diisobutyl amidine hydrochloride as the initiator. The proportion of AMPS, AM and SSS was optimized to obtain terpolymers through chemical reaction. Then the synthetic products were extracted, dried and crushed with acetone to produce ternary copolymerization fluid loss agent, AAS. High-temperature cement slurry filtration performances were evaluated by using infrared spectroscopy, nuclear magnetic resonance hydrogen spectrum characterization, thermogravimetric and differential thermal analysis to determine the stability of these synthetic products. Research results showed that the synthetic copolymer decomposition temperature was 350℃ when the mass ratio of AMPS,AM and SSS was 20:5:1; API cement slurry filtration could be controlled under 150 mL at 180℃ when the dosage of copolymer was increased by 1.6%. At 150℃, the filtration was 56 mL. The research showed that the ternary copolymer fluid loss agent AAS could significantly improve the filtration control ability of the cement slurry at high temperatures. In addition, the ternary copolymer fluid had no obvious effect on rheological properties, strength and thickening time of the cement slurry, so that it could meet the technical requirements for high-temperature cementing slurry.
-
Keywords:
- terpolymer /
- fluid loss additive /
- high temperature resistance /
- co-polymerization
-
-
[1] 张德润,张旭.固井液设计及应用:下册[M].北京:石油工业出版社,2000:52-60. Zhang Derun,Zhang Xu.The cementing fluid design and application:part Ⅱ[M].Beijing:Petroleum Industry Press,2000:52-60. [2] Baret J F.Why cement fluid loss additives are necessary[R].SPE 17630,1988.
[3] 刘景丽,郝惠军,李秀妹,等.油井水泥降失水剂接枝改性聚乙烯醇的研究[J].钻井液与完井液,2014,31(4):79-80. Liu Jingli,Hao Huijun,Li Xiumei,et al.Study on graft modified PVA-A cement slurry fluid loss reducer[J].Drilling Fluid Completion Fluid,2014,31(4):79-80. [4] 赵田红,王忠信,谷秋志,等.阴离子型AM/AMPS共聚物的合成及性能评价[J].精细石油化工进展,2006,7(12):21-23. Zhao Tianhong,Wang Zhongxin,Gu Qiuzhi,et al.Synthesis and evaluation of anionic AM/AMPS copolymer[J].Dadvances in Fine Petrochemicals,2006,7(12):21-23. [5] Fink J K.Oil field chemicals[C].Burlington:Gulf Professional Publishing,2003:Chapter 10.
[6] Reddy B Raghava,Riley Wendell D.High temperature viscosifying and fluid loss controlling additives for well cements,well cement compositions and methods:US,6770604[P].2004-08-20.
[7] Bair Keith A,Chen Fu,Melbouci Mohand,et al.Polymeric fluid loss additives and method of use thereof:US,6590050[P].2003-07-08.
[8] Susann Wiechers,Gudrun Schmidt-Naake.Copolymerization of 2-Acrylamido-2-methl-1-propanesulfonic acid and 1-Vinylimdazole in inverse miniemulsion[J].Macromolecular Reaction Engineering,2008,2(2):126-134.
[9] 李晓岚,国安平,李韶利,等.抗高温油井水泥降失水剂的合成及性能评价[J].油田化学,2013,30(2):166-167. Li Xiaolan,Guo Anping,Li Shaoli,et al.Synthesis and performance evaluation of high temperature resistant fluid loss reducer for oil well cement[J].Oilfield Chemistry,2013,30(2):166-167. [10] 邓清月,高婷,李爽.油井水泥降失水剂的合成及性能评价[J].精细石油化工进展,2011,12(9):9-11. Deng Qingyue,Gao Ting,Li Shuang.Synthesis and evaluation of fluid loss additive for oil well cement[J].Dadvances in Fine Petrochemicals,2011,12(9):9-11. [11] 胶凝材料编写组.胶凝材料学[M].北京:中国建筑工业出版社,1980:91-92. Editorial Committee of Cementing Material Science.Cementing material science[M].Beijing:China Architecture Building Press,1980:91-92. -
期刊类型引用(11)
1. 谭中良,贾红育,马涛,卢刚,许关利. 高钙镁油藏悬浮微晶聚合物体系研究. 应用化工. 2024(08): 1834-1837 . 百度学术
2. 梁丹,张健,周文胜,王励琪,刘媛,赵文森. 水平井非连续化学驱技术及其先导试验应用. 中国海上油气. 2023(06): 89-97 . 百度学术
3. 孙焕泉. 高温高盐油藏化学驱提高采收率技术发展与思考. 石油科技论坛. 2021(02): 1-7 . 百度学术
4. 陶光辉,束华东,刘斌. 古城油田B125区块稠油油藏超高分子量聚合物驱技术. 石油钻探技术. 2020(01): 66-71 . 本站查看
5. 徐辉,祝仰文,宋敏,庞雪君,孙秀芝. 温敏型聚合物驱油性能研究. 油气藏评价与开发. 2020(06): 53-57+64 . 百度学术
6. 李宗阳,王业飞,曹绪龙,祝仰文,徐辉,魏翠华,张新英. 新型耐温抗盐聚合物驱油体系设计评价及应用. 油气地质与采收率. 2019(02): 106-112 . 百度学术
7. 刘义刚,丁名臣,韩玉贵,王业飞,孟祥海,赵鹏,苑玉静. 低疏水单体含量缔合聚合物溶液驱油特性实验评价. 油田化学. 2018(02): 296-301 . 百度学术
8. 祝仰文. 超高分三元共聚物流变特性及驱油性能. 油气地质与采收率. 2018(06): 78-83 . 百度学术
9. 祝仰文,刘歌,曹绪龙,宋新旺,陈湧,刘育. 阴离子聚丙烯酰胺/三乙醇胺超分子体系的表征及性能. 高等学校化学学报. 2016(09): 1728-1732 . 百度学术
10. 赵方剑. 胜利油田化学驱提高采收率技术研究进展. 当代石油石化. 2016(10): 19-22 . 百度学术
11. 王琳,杨小华,林永学,何剑. 新型两性离子共聚物(AM/DEPS)的合成与评价. 石油钻探技术. 2016(05): 72-78 . 本站查看
其他类型引用(5)
计量
- 文章访问数: 3128
- HTML全文浏览量: 94
- PDF下载量: 3818
- 被引次数: 16