钙质晶须在高温加砂水泥中的增强性能研究

楼晨阳, 姚晓, 何德清, 于三跃, 韩远远, 张鹏伟

楼晨阳, 姚晓, 何德清, 于三跃, 韩远远, 张鹏伟. 钙质晶须在高温加砂水泥中的增强性能研究[J]. 石油钻探技术, 2015, 43(4): 91-95. DOI: 10.11911/syztjs.201504016
引用本文: 楼晨阳, 姚晓, 何德清, 于三跃, 韩远远, 张鹏伟. 钙质晶须在高温加砂水泥中的增强性能研究[J]. 石油钻探技术, 2015, 43(4): 91-95. DOI: 10.11911/syztjs.201504016
Lou Chenyang, Yao Xiao, He Deqing, Yu Sanyue, Han Yuanyuan, Zhang Pengwei. The Reinforcing Effect of Calcium-Based Whisker in High-Temperature Sand-Cement Mixtures[J]. Petroleum Drilling Techniques, 2015, 43(4): 91-95. DOI: 10.11911/syztjs.201504016
Citation: Lou Chenyang, Yao Xiao, He Deqing, Yu Sanyue, Han Yuanyuan, Zhang Pengwei. The Reinforcing Effect of Calcium-Based Whisker in High-Temperature Sand-Cement Mixtures[J]. Petroleum Drilling Techniques, 2015, 43(4): 91-95. DOI: 10.11911/syztjs.201504016

钙质晶须在高温加砂水泥中的增强性能研究

基金项目: 

中石化石油工程技术服务有限公司先导项目"新型固井材料提高热采井固井质量技术应用研究" 和江苏省高校优势学科建设工程项目资助。

详细信息
    作者简介:

    楼晨阳(1990—),男,浙江东阳人,2012年毕业于吉林建筑大学无机非金属材料专业,在读硕士研究生,从事固井材料及外加剂研究。

    通讯作者:

    姚晓,yaoxiao@njtech.edu.cn。

  • 中图分类号: TE254

The Reinforcing Effect of Calcium-Based Whisker in High-Temperature Sand-Cement Mixtures

  • 摘要: 为满足稠油开采对油井水泥石高温力学性能的要求,探索了钙质晶须在油井水泥及高温加砂水泥中应用的可行性。首先研究了80℃下硫酸钙晶须(CSW)及两种自制钙质晶须(GZWS和GZWL)对油井水泥石的增强增韧效果,并在此基础上,通过干热养护方式(600℃煅烧6 h)考察了5% GZWL对加砂水泥石的增强效果。结果发现,CSW对油井水泥石无增强增韧作用,而GZWL和GZWS的增强增韧效果明显,且长径比大的GZWL优于GZWS。随GZWL加量增大,油井水泥石的抗压强度和冲击韧度增大,当加量为5%时,1,3,7和28 d水泥石的抗压强度较净浆水泥石分别提高了18.7%,42.4%,20.6%和20.7%,冲击韧度较净浆水泥石分别提高了6.8%,7.0%,12.8%和13.0%;该加量下干热养护后的水泥石抗压强度较纯加砂水泥石提高了108.0%。研究结果表明,晶须表面性质(亲水性)是保障其与水泥石基体良好胶结并发挥其作用的前提,晶须长径比越大,增强效果越显著,故GZWL能有效抑制加砂水泥石的高温强度衰退。
    Abstract: To satisfy the requirement of high temperature mechanical properties of oil well cement in heavy oil production,the application of calcium-based whisker in oil well cement as well as in cement with silica sand at high temperatures was investigated. First, the reinforcing and toughening effect of calcium sulfate whisker (CSW) and self-made whiskers (GZWS and GZWL) at 80℃ on oil well cement rock was tested, and then on the base of it, respectively. Compressive of cement with silica sand mixed with 5% GZWL in dry-heat curing at 600℃ was studied as well. The result showed that CSW had no reinforcing and toughening effect on oil well cemented rock, while GZWS and GZWL had obvious reinforcing and toughening effects, and GZWL with greater length diameter ratio was superior to GZWS. With the increased application of GZWL, the compressive strength and impact toughness of oil well cement stone increased, too. When 5% was added, the compressive strengths of cement rocks 1, 3, 7 and 28 d were increased by 18.7%, 42.4%, 20.6% and 20.7% respectively, compared with neat paste. Impact toughness was increased by 6.8%, 7.0%, 12.8% and 13.0% in the curing age. The result of the high temperature experiment showed the compressive strength of cement with silica sand with 5% GZWL was more than twice the contrast. It was demonstrated that GZWL efficiently acts as a high temperature resistance reinforcing admixture. Furthermore, a whisker with hydrophilicity had a good reinforcing effect, and the greater the long diameter ratio of whisker, the higher the reinforcing effect.
  • [1] 赵修太,付敏杰,王增宝,等.稠油热采调堵系研究进展综述[J].特种油气藏,2013,20(4):1-4. Zhao Xiutai,Fu Minjie,Wang Zengbao,et al.Research overview of profile control and water shut-off agents for heavy oil thermal recovery[J].Special Oil Gas Reservoirs,2013,20(4):1-4.
    [2] 连经社,王树山.采油工艺[M].北京:中国石化出版社,2011:79. Lian Jingshe,Wang Shushan.Oil production technology[M].Beijing:China Petrochemical Press,2011:79.
    [3] 李早元,郭小阳,杨远光,等.新型耐高温水泥用于热采井固井初探[J].西南石油大学学报,2001,23(4):29-32. Li Zaoyuan,Guo Xiaoyang,Yang Yuanguang,et al. Preliminary study of a new anti-high temperature cement used for thermal-recovery wells[J]. Journal of Southeast Petroleum Institute,2001,23(4):29-32.
    [4] 蔡文斌,李友平,李淑兰.火烧油层技术在胜利油田的应用[J].石油钻探技术,2004,32(2):52-55. Cai Wenbin,Li Youping,Li Shulan. Applications of combustion drive in Shengli Oilfield[J]. Petroleum Drilling Techniques,2004,32(2):52-55.
    [5] 曾汉民.高技术新材料要览[M].北京:中国科学技术出版社,1993:529-531. Zeng Hanmin. Survey of high-tech new materials[M]. Beijing:China Science and Technology Press,1993:529-531.
    [6] 冯端.固体物理学大辞典[M].北京:高等教育出版社,1995:583. Feng Duan. A grand dictionary of solid state physics[M]. Beijing:High Education Press,1995:583.
    [7] 徐兆瑜.晶须的研究和应用新进展[J].化工技术与开发,2005,34(2):11-17. Xu Zhaoyu.Research progress of whisker and its application[J].Technology Development of Chemical Industry,2005,34(2):11-17.
    [8]

    API SPEC10—1999 Specificiation for materials and testing for oil well cements[S].

    [9] GB/T 1346—2001 水泥标准稠度用水量、凝结时间、安定性检验方法[S]. GB/T 1346—2001 Test methods for water requirement of normal consistency,setting time and soundness of the portland cement[S].
    [10] 庞强特.关于混凝土干热养护机理的讨论:二[J].混凝土及建筑构件,1980(1):38-42. Pang Qiangte.Theoretical study of dry-heat curing mechanism of concrete:second part[J].Concret and Architectural Component,1980(1):38-42.
    [11] 冶金工业部建筑研究院情报组.国外预制厂加速混凝土硬化的热养护方法发展概况[J].建筑技术,1978(5):72-79. Information Organization of Research Institute of Construction of Ministry of Metallurgical. Development of heat curing to accelerate hydration of concrete abroad[J]. Architecture Technology,1978(5):72-79.
    [12] 北京市建筑工程研究所制品室.混凝土制品的干热养护[J].建筑技术,1978(5):50-52. Beijing Building Construction Research Institute.Dry-heat curing of precast concret[J].Architecture Technology,1978(5):50-52.
    [13] 李武.无机晶须[M].北京:化学工业出版社,2005:68. Li Wu.Inorganic whisker[M].Beijing:Chemical Industry Press,2005:68.
    [14] 张景富,徐明,闫占辉,等.高温条件下G级油井水泥原浆及加砂水泥的水化和硬化[J].硅酸盐学报,2008,36(7):939-945. Zhang Jingfu,Xu Ming,Yan Zhanhui,et al. Hydration and hardened of class G oil well cement with and without silica sands under high temperatures[J]. Journal of the Chinese Ceramic Society,2008,36(7):939-945.
    [15] 杨智光,崔海清,肖志兴.深井高温条件下油井水泥强度变化规律研究[J].石油学报,2008,29(3):435-437. Yang Zhiguang,Cui Haiqing,Xiao Zhixing. Change of cement stone strength in the deep high temperature oil well[J]. Acta Petrolei Sinica,2008,29(3):435-437.
    [16]

    Becher P F,Hsueh C H,Angelini P,et al. Toughening behavior in whisker-reinforced ceramic matrix composites[J]. Journal of the American Ceramic Society,1988,71(12):1050-1061.

    [17]

    Faber K T,Evans A G. Crack deflection processes:I:theory[J]. Acta Metallurgica,1983,31(83):565-576.

    [18]

    Mazdiyasn K S.Fiber reinforced ceramic composites materials[M]. Park Ridge:Noyes Publications,1990:324.

  • 期刊类型引用(11)

    1. 兰晓云,高峰,周强,任建强,王建锋,洪世杰. 四川盆地高密度钾聚磺水基钻井液酸性气体污染治理研究. 山西化工. 2024(05): 211-212+216 . 百度学术
    2. 田文欣,俞浩杰. 页岩储层高性能环保型水基钻井液体系及其环境影响评价. 断块油气田. 2023(01): 38-43 . 百度学术
    3. 李文涛. 四川页岩气井碳酸根/碳酸氢根污染问题的处理实践. 钻井液与完井液. 2022(01): 53-58 . 百度学术
    4. 胡祖彪,张建卿,王清臣,孟凡金,侯博,张勤,屈艳平. 长庆致密气超长水平段水基钻井液技术. 钻井液与完井液. 2021(02): 183-188 . 百度学术
    5. 谭天宇,邱爱民,汤继华,李浩,席佳男,霍丽芬. 吉兰泰油田吉华1区块超浅层水平井钻井关键技术. 石油钻探技术. 2021(06): 37-41 . 本站查看
    6. 任雯,刘晓辉,李盛林,王飞,仝坤,张明栋. 废弃高性能水基钻井液循环利用电吸附处理方法. 石油钻探技术. 2020(04): 50-55 . 本站查看
    7. 胡祖彪,张建卿,王清臣,吴付频,韩成福,柳伟荣. 长庆油田华H50-7井超长水平段钻井液技术. 石油钻探技术. 2020(04): 28-36 . 本站查看
    8. 甄剑武. 水平井高密度钻井液润滑减阻技术研究及现场试验. 石油钻探技术. 2020(05): 55-60 . 本站查看
    9. 祝学飞,孙俊,徐思旭,刘皓枫,査凌飞. HT2井三开水基钻井液CO_3~(2-)和HCO_3~-污染处理工艺. 钻井液与完井液. 2019(01): 36-40 . 百度学术
    10. 初成. 高性能水基钻井液在油田致密油藏水平井中的应用研究. 西部探矿工程. 2019(05): 60+65 . 百度学术
    11. 王建龙,齐昌利,柳鹤,陈鹏,汪鸿,郑永锋. 沧东凹陷致密油气藏水平井钻井关键技术. 石油钻探技术. 2019(05): 11-16 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  2874
  • HTML全文浏览量:  55
  • PDF下载量:  3995
  • 被引次数: 14
出版历程
  • 收稿日期:  2014-09-23
  • 修回日期:  2015-06-07
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回