缅甸西海岸深水气田水基钻井液优化设计

赵欣, 邱正松, 高永会, 张永君, 马永乐, 刘晓栋

赵欣, 邱正松, 高永会, 张永君, 马永乐, 刘晓栋. 缅甸西海岸深水气田水基钻井液优化设计[J]. 石油钻探技术, 2015, 43(4): 13-18. DOI: 10.11911/syztjs.201504003
引用本文: 赵欣, 邱正松, 高永会, 张永君, 马永乐, 刘晓栋. 缅甸西海岸深水气田水基钻井液优化设计[J]. 石油钻探技术, 2015, 43(4): 13-18. DOI: 10.11911/syztjs.201504003
Zhao Xin, Qiu Zhengsong, Gao Yonghui, Zhang Yongjun, Ma Yongle, Liu Xiaodong. Design Optimization for Water-Based Drilling Fluids in a Deepwater Gas Field on the Western Coast of Myanmar[J]. Petroleum Drilling Techniques, 2015, 43(4): 13-18. DOI: 10.11911/syztjs.201504003
Citation: Zhao Xin, Qiu Zhengsong, Gao Yonghui, Zhang Yongjun, Ma Yongle, Liu Xiaodong. Design Optimization for Water-Based Drilling Fluids in a Deepwater Gas Field on the Western Coast of Myanmar[J]. Petroleum Drilling Techniques, 2015, 43(4): 13-18. DOI: 10.11911/syztjs.201504003

缅甸西海岸深水气田水基钻井液优化设计

基金项目: 

国家重点基础研究发展计划("973"计划)项目"深水油气井完井与测试优化方法"(编号:2015CB251205)、中国石油集团科技专项"(缅甸)深水钻井工程设计技术研究"(编号:2013D-4507)联合资助。

详细信息
    作者简介:

    赵欣(1987—),男,山东即墨人,2009年毕业于中国石油大学(华东)石油工程专业,2015年获中国石油大学(华东)油气井工程专业博士学位,在站博士后,主要从事海洋深水钻井液技术研究工作。

  • 中图分类号: TE254

Design Optimization for Water-Based Drilling Fluids in a Deepwater Gas Field on the Western Coast of Myanmar

  • 摘要: 为解决缅甸西海岸深水气田钻井面临的水敏性泥页岩井壁失稳、海底低温高压条件下钻井液增稠和易生成天然气水合物的问题,以聚胺抑制剂SDJA为关键处理剂,在优化钻井液低温流变性及优选天然气水合物抑制剂等关键处理剂的基础上,构建了强抑制性水基钻井液HIDril。室内性能评价结果表明,该钻井液具有较低的黏度和较高的动切力及6值,有利于清洗井眼,并且在温度4℃时具有良好的流变性;水敏性泥页岩回收率最高可达96.33%,抑制性能优良;在模拟海底环境的低温高压条件下,可有效抑制天然气水合物的生成;渗透率恢复率大于85.57%,具有较好的储层保护效果。在此基础上,针对缅甸西海岸深水气田不同井段的特点进行了钻井液技术方案设计,可为该深水气田钻井提供借鉴。
    Abstract: In order to cope with the problems encountered in deepwater gas reservoir drilling on the west coast of Myanmar, such as borehole instability in water-sensitive shale formation, mud thickening at low temperature and high pressure on the seafloor, and the generation of natural gas hydrate, strong inhibitory water-based drilling fluid HIDril was optimized and designed on the basis of optimizing drilling fluid rheology at low temperature and selecting key agents including a gas hydrate inhibitor, taking polyamine inhibitors SDJA as the key agent. Indoor performance evaluation results showed that the drilling fluid of lower viscosity, higher dynamic shear and 6 value was better for hole cleaning, and at the temperature 4℃, it had good rheology. The mud displayed satisfactory performances in inhibition of hydration of water sensitive mud shale and achieved the highest recovery rate of water-sensitive shale up to 96.33%. In the simulated seabed environment with low temperatures and high pressures, HIDril could effectively inhibit the formation of gas hydrate. Drilling fluid permeability recovery rate was above 85.57%, which had a good reservoir protection effect. On this basis, drilling fluid technology program was designed according to the characteristics of different well sections in the deepwater gas field at the west coast of Myanmar and the design results could provide reference cases for drilling activities in this deep water gas field.
  • [1]

    Zamora M,Broussard P N,Stephens M P.The top 10 mud-related concerns in deepwater drilling operations[R].SPE 59019,2000.

    [2]

    Leaper R,Hansen N,Otto M.Meeting deepwater challenges with high performance water based mud[R].AADE-06-DF-HO-31,2006.

    [3] 路保平,李国华.西非深水钻井完井关键技术[J].石油钻探技术,2013,41(3):1-6. Lu Baoping,Li Guohua.Key technologies for deepwater drilling completion in West Africa[J].Petroleum Drilling Techniques,2013,41(3):1-6.
    [4] 胡进军,孙强,夏小春,等.环境友好型水基钻井液 GREEN-DRILL的研制与应用[J].石油钻探技术,2014,42(2):75-79. Hu Jinjun,Sun Qiang,Xia Xiaochun,et al.Development and application of environment-friendly drilling fluid GREEN-DRILL[J].Petroleum Drilling Techniques,2014,42(2):75-79.
    [5] 邱正松,赵欣.深水钻井液技术现状与发展趋势[J].特种油气藏,2013,20(3):1-7. Qiu Zhengsong,Zhao Xin.Current status and developing trend of deepwater drilling fluid technology[J].Special Oil Gas Reservoirs,2013,20(3):1-7.
    [6] 罗健生,李自立,李怀科,等.HEM深水聚胺钻井液体系的研究与应用[J].钻井液与完井液,2014,31(1):20-23. Luo Jiansheng,Li Zili,Li Huaike,et al.Research and application of HEM poly-amine drilling fluids used in deep water operation[J].Drilling Fluid Completion Fluid,2014,31(1):20-23.
    [7]

    Marin J U,Shah F,Serrano M A,et al.First deepwater well successfully drilled in Colombia with a high-performance water-based fluid[R].SPE 120768,2009.

    [8]

    Davison J M,Clary S,Saasen A,et al.Rheology of various drilling fluid systems under deepwater drilling conditions and the importance of accurate predictions of downhole fluid hydraulics[R].SPE 56632,1999.

    [9]

    Herzhaft B,Peysson Y,Isambourg P,et al.Rheological properties of drilling muds in deep offshore conditions[R].SPE/IADC 67736,2001.

    [10]

    Rojas J C,Bern P,Plutt L J,et al.New constant-rheology synthetic-based fluid reduces downhole losses in deepwater environments[R].SPE 109586,2007.

    [11] 罗健生,李自立,刘刚,等.深水用煤制油恒流变合成基钻井液体系的研制[J].中国海上油气,2014,26(1):74-77. Luo Jiansheng,Li Zili,Liu Gang,et al.Development of the coal liquefaction-based drilling fluid system with constant-rheology used in deep water[J].China Offshore Oil and Gas,2014,26(1):74-77.
    [12]

    Young S,Friedheim J,John Lee,et al.A new generation of flat rheology invert drilling fluids[R].SPE 154682,2012.

    [13]

    Zhong H,Qiu Z,Huang W,et al.Shale inhibitive properties of polyether diamine in water-based drilling fluid[J].Journal of Petroleum Science and Engineering,2011,78(2):510-515.

    [14]

    Zhao Xin,Qiu Zhengsong,Zhou Guowei,et al.Synergism of thermodynamic hydrate inhibitors on the performance of poly (vinyl pyrrolidone) in deepwater drilling fluid[J].Journal of Natural Gas Science and Engineering,2015,23:47-54.

    [15] 赵欣,邱正松,黄维安,等.天然气水合物热力学抑制剂作用机制及优化设计[J].石油学报,2015,36(6):760-766. Zhao Xin,Qiu Zhengsong,Huang Weian,et al.Inhibition mechanism and optimized design of thermodynamic gas hydrate inhibitors[J].Acta Petrolei Sinica,2015,36(6):760-766.
    [16] 赵欣,邱正松,石秉忠,等.深水聚胺高性能钻井液试验研究[J].石油钻探技术,2013,41(3):35-39. Zhao Xin,Qiu Zhengsong,Shi Bingzhong,et al.Experimental study on high performance polyamine drilling fluid for deepwater drilling[J].Petroleum Drilling Techniques,2013,41(3):35-39.
    [17] SY/T 6540—2002 钻井液完井液损害油层室内评价方法[S]. SY/T 6540—2002 Lab testing method of drilling and completion fluids damaging oil formation[S].
  • 期刊类型引用(9)

    1. 郭东东,黄芳飞,宁伏龙,卢秋平,刘志超,余义兵. 大洋科学钻探与海洋水合物钻井液体系研究进展. 海洋石油. 2023(03): 64-69 . 百度学术
    2. 潘一,廖松泽,杨双春,NIGMATULLIN Dinar,马迪,丛禾. 耐高温聚胺类页岩抑制剂的研究现状. 化工进展. 2020(02): 686-695 . 百度学术
    3. 邹志飞,周风山,付帆,李晓东,李艳宁. 基于Web of Science数据库的钻井液文献计量分析. 探矿工程(岩土钻掘工程). 2020(12): 1-7 . 百度学术
    4. 蒋巍. 海上硅酸钠聚合醇钻井液的研制. 石油化工高等学校学报. 2019(04): 52-57 . 百度学术
    5. 唐咸弟,李中,郭永宾,刘和兴,孟文波,程朋,崔应中,舒福昌. 陵水17-2气田深水钻井液性能控制指标体系研究. 化学与生物工程. 2019(12): 44-47 . 百度学术
    6. 许定江,练章华,张强,林铁军. 深水钻完井工程设计要点分析. 断块油气田. 2017(01): 131-136 . 百度学术
    7. 罗春芝,何晨晨,杨云锋. 聚有机硅胺强抑制剂LGA-1的室内研究. 断块油气田. 2017(02): 273-276 . 百度学术
    8. 李家学,张绍俊,李磊,孙东山,张超,王涛. 环保型高性能水基钻井液在山前超深井中的应用. 钻井液与完井液. 2017(05): 20-26 . 百度学术
    9. 丁乙,梁利喜,刘向君,许丽. 温度和化学耦合作用对泥页岩地层井壁稳定性的影响. 断块油气田. 2016(05): 663-667 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  3708
  • HTML全文浏览量:  81
  • PDF下载量:  4126
  • 被引次数: 16
出版历程
  • 收稿日期:  2015-04-20
  • 修回日期:  2015-07-11
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回