The Impact of Lateral Vibration on Friction of Drill String in Horizontal Wells
-
摘要: 激振力的幅值和频率是影响横向振动类减摩阻工具性能的主要参数,利用自行研制的旋转激励载荷作用下摩擦力测试试验装置,研究了激振力的幅值和频率对钢-石板平面摩擦副摩擦系数的影响规律.试验结果发现,在激振频率为5,10和20 Hz条件下,与未施加激振力时的摩擦系数相比,当激振力增加到34.2 N时,钢-石板平面摩擦副的摩擦系数分别减小21.6%,29.0%及34.4%;在激振力为11.4,22.8和34.2 N条件下,与未施加激振力时的摩擦系数相比,当激振频率增加到30 Hz时,钢-石板平面摩擦副的摩擦系数分别减小22.8%、27.4%及39.0%.研究结果表明:在相同激振频率下,钢-石板平面摩擦副的摩擦系数与激振力幅值呈线性负相关;在相同激振力幅值下,钢-石板平面摩擦副的摩擦系数与激振频率呈对数负相关.Abstract: The amplitude and frequency of the exciting force are main factors which impact on performance of the lateral vibrating friction-reducing tools. Through measuring friction under the load of rotary exciting force with the self-developed testing unit, the impact of amplitude and frequency of the exciting force on the friction coefficient of plane friction pairs between steel and rock plate was diagnosed. The results show that friction coefficients reduced by 21.6%, 29.0% and 34.4% respectively when the exciting force increased from zero to 34.2 N at the frequency of 5, 10 and 20 Hz, and by 22.8%, 27.4% and 39.0% respectively, when the exciting frequency increased from zero to 30 Hz at the exciting force of 11.4, 22.8 and 34.2 N respectively. The study indicates that the friction coefficient of plane friction pairs between steel and rock plate has a negative linear relationship with the amplitude of the exciting force at the same exciting frequency, and a negative logarithmic relationship with the exciting frequency at the same exciting force.
-
-
[1] 闻邦椿,李以农,张义民,等.振动利用工程[M].北京:科学出版社,2005:3-12. Wen Bangchun,Li Yinong,Zhang Yimin,et al.Vibration utilization engineering[M].Beijing:Science Press,2005:3-12. [2] 瓦伦丁 L 波波夫.接触力学与摩擦学的原理及应用[M].李强,雒建斌,译.北京:清华大学出版社,2011:220-221. Valnin L Popov.Contact mechanics and friction physical principles and applications[M].Translator:Li Qiang,Luo Jianbin.Beijing:Tsinghua University Press,2011:220-221. [3] Dellinger T B,Roper W F.Reduction of the frictional coefficient in a borehole by the use of vibration: US,4384625[P].1983-05-24.
[4] Newman K R,Burnett T G,Pursell J C,et al.Modeling the affect of a downhole vibrator[R].SPE 121752,2009.
[5] 王鹏,倪红坚,王瑞和,等.调制式振动对大斜度井减摩阻影响规律[J].中国石油大学学报:自然科学版,2014,38(4):93-97. Wang Peng,Ni Hongjian,Wang Ruihe,et al.Influence laws of modulated vibration on friction reduction in inclined-wells[J].Journal of China University of Petroleum:Edition of Natural Science,2014,38(4):93-97. [6] 王谊,施连海.水力脉动冲击钻井工具初步研究实验[J].石油钻探技术,2006,4(2):51-52. Wang Yi,Shi Lianhai.Study of a hydraulic-pulse-percussion drilling tool and its trial[J].Petroleum Drilling Techniques,2006,34(2):51-52. [7] McCarthy J P,Stanes B,Rebellon J E,et al.A step change in drilling efficiency: quantifying the effects of adding an axial oscillation tool within challenging wellbore environments[R].SPE 119958,2009.
[8] 管志川,刘永旺,魏文忠,等.井下钻柱减振增压装置工作原理及提速效果分析[J].石油钻探技术,2012,40(2):8-13. Guan Zhichuan,Liu Yongwang,Wei Wenzhong,et al.Downhole drill string absorption hydraulic supercharging device’ working principle and analysis of speed-increasing effect[J].Petroleum Drilling Techniques,2012,40(2):8-13. [9] Zheng Shunfeng,Jeffres B,Tthomer H V,et al.Method and apparatus to vibrate a downhole component:US,6907927[P].2005-06-21.
[10] Walter B.Acoustic flow pulsing and method for drilling string:US,7059426[P].2006-06-13.
[11] Eddison A M,Haredie R.Downhole flow pulsing apparatus:US,6279670[P].2001-08-28.
[12] 李玮,闫铁,张志超,等.高频振动钻具冲击下岩石响应机理及破岩试验分析[J].石油钻探技术,2013,41(6):25-28. Li Wei,Yan Tie,Zhang Zhichao,et al.Rock response mechanism and rock breaking test analysis for impact of high frequency vibration drilling tool[J].Petroleum Drilling Techniques,2013,41(6):25-28. [13] 易灿,李根生,范红康.井下振动减摩器的设计及试验研究[J].石油矿场机械,2003,32(6):42-44. Yi Can,Li Gensheng,Fan Hongkang.The design and experimentation of vibrational friction-reducing generator for down hole drilling[J].Oil Field Equipment,2003,32(6):42-44. [14] 陈朝伟,周英操,申瑞臣,等.连续管钻井减摩技术综述[J].石油钻探技术,2010,38(1):29-31. Chen Chaowei,Zhou Yingcao,Shen Ruichen,et al.Overview of drag reducing technologies in coiled tubing drilling[J].Petroleum Drilling Techniques,2010,38(1):29-31. [15] 倪红坚,王瑞和,王鹏.一种激发钻柱振动的钻井工具:中国,2012102560282[P].2014-11-05. Ni Hongjian,Wang Ruihe,Wang Peng.Drilling tool for stimulating vibration of drill column:CN,201210256028[P].2014-11-05. -
期刊类型引用(11)
1. 兰晓云,高峰,周强,任建强,王建锋,洪世杰. 四川盆地高密度钾聚磺水基钻井液酸性气体污染治理研究. 山西化工. 2024(05): 211-212+216 . 百度学术
2. 田文欣,俞浩杰. 页岩储层高性能环保型水基钻井液体系及其环境影响评价. 断块油气田. 2023(01): 38-43 . 百度学术
3. 李文涛. 四川页岩气井碳酸根/碳酸氢根污染问题的处理实践. 钻井液与完井液. 2022(01): 53-58 . 百度学术
4. 胡祖彪,张建卿,王清臣,孟凡金,侯博,张勤,屈艳平. 长庆致密气超长水平段水基钻井液技术. 钻井液与完井液. 2021(02): 183-188 . 百度学术
5. 谭天宇,邱爱民,汤继华,李浩,席佳男,霍丽芬. 吉兰泰油田吉华1区块超浅层水平井钻井关键技术. 石油钻探技术. 2021(06): 37-41 . 本站查看
6. 任雯,刘晓辉,李盛林,王飞,仝坤,张明栋. 废弃高性能水基钻井液循环利用电吸附处理方法. 石油钻探技术. 2020(04): 50-55 . 本站查看
7. 胡祖彪,张建卿,王清臣,吴付频,韩成福,柳伟荣. 长庆油田华H50-7井超长水平段钻井液技术. 石油钻探技术. 2020(04): 28-36 . 本站查看
8. 甄剑武. 水平井高密度钻井液润滑减阻技术研究及现场试验. 石油钻探技术. 2020(05): 55-60 . 本站查看
9. 祝学飞,孙俊,徐思旭,刘皓枫,査凌飞. HT2井三开水基钻井液CO_3~(2-)和HCO_3~-污染处理工艺. 钻井液与完井液. 2019(01): 36-40 . 百度学术
10. 初成. 高性能水基钻井液在油田致密油藏水平井中的应用研究. 西部探矿工程. 2019(05): 60+65 . 百度学术
11. 王建龙,齐昌利,柳鹤,陈鹏,汪鸿,郑永锋. 沧东凹陷致密油气藏水平井钻井关键技术. 石油钻探技术. 2019(05): 11-16 . 本站查看
其他类型引用(3)
计量
- 文章访问数: 3729
- HTML全文浏览量: 74
- PDF下载量: 4225
- 被引次数: 14