Solution Characteristics and Oil Displacement Efficiency of an Ultrahigh Molecular Weight Association Polymer
-
摘要: 为了提高胜利油田高温高含盐Ⅲ类油藏的聚合物驱效果,开展了耐温抗盐超高分子缔合聚合物AP-P5溶液的特性及驱油效果研究.在温度为85 ℃、地层水矿化度为32 868 mg/L的Ⅲ类油藏条件下,对AP-P5的基本物化性能进行了评价,测试了AP-P5溶液的黏度-浓度曲线,用光散射仪测定了AP-P5溶液的流体力学半径分布,并通过混合聚合物和石英砂,研究了溶液的吸附性,最后利用岩心物理模拟试验研究了AP-P5的注入渗流特性和驱油效果;在胜利油田坨28区块进行了现场试验,分析了AP-P5溶液的注入曲线和注入后该区块的生产曲线.试验发现,AP-P5与普通缔合聚合物DH3相比,相对分子质量高一倍,缔合单体含量低58%,无明显的临界缔合浓度,流体力学半径更小,吸附量小30%,注入压力低50%,采收率提高率高3.9百分点;不过,现场试验还在继续,目前尚无明显的降水增油效果.研究表明,AP-P5溶液特性优良,在地层中比普通缔合聚合物更容易形成活塞式推进,驱油效果更好.Abstract: In order to improve the polymer flooding effect in high-temperature and high-salt Class III reservoirs in the Shengli Oilfield, the solution characteristics and oil displacement effect of a temperature and salt-resisting ultrahigh molecular association polymer AP-P5 are studied. Basic physicochemical properties of AP-P5 are evaluated under Class III reservoirs at 85 degrees and salinity of 32 868 mg/L. The viscosity at varied concentrations is examined, the hydrodynamic radius distribution of the solution is determined and the adsorption is studied through mixed polymer solution and quartz sand. Finally, the injection and seepage characteristics and oil displacement effect are investigated through physical experiments. A field test is carried out in the Tuo 28 Block of Shengli Oilfield to analyze the injection of AP-P5 solution and production after injection. The results show that AP-P5 possesses double molecular weight, smaller hydrodynamic radius and no significant critical associating concentration comparing with ordinary associating polymer DH3. Moreover, it is lower by 58% in the associated monomer weight, 30% in adsorption capacity and 50% in injection pressure and higher by 3.9% in the recovery rate. More field tests are ongoing but it has not shown water reduction and production increasing effect. The research reveals that AP-P5 has good solution properties and it is easier to generate a piston-like movement with it than DH3 in formations;further, it has higher displacement efficiency.
-
-
[1] 胡伟,李璐,苏聪.杏六区中部葡Ⅰ1-3油层聚合物驱布井方式研究[J].断块油气田,2013,20(1):67-70. Hu Wei,Li Lu,Su Cong. Well spacing pattern of polymer flooding in PuⅠ 1-3 reservoirs in central Xing 6 District[J].Fault-Block Oil and Gas Field,2013,20(1):67-70. [2] 陈渊,孙玉青,温栋良,等. 聚合物纳米微球调驱性能室内评价及现场试验[J].石油钻探技术,2012,40(4):102-106. Chen Yuan,Sun Yuqing,Wen Dongliang,et al. Evaluation and application on profile control of polymer nano-microspheres[J].Petroleum Drilling Techniques,2012,40(4):102-106. [3] 徐辉,孙秀芝,韩玉贵,等.超高分子聚合物性能评价及微观结构研究[J].石油钻探技术,2013,41(3):114-118. Xu Hui,Sun Xiuzhi,Han Yugui,et al.Performance evaluation and microstructure study of ultra high molecular weight polymer[J].Petroleum Drilling Techniques,2013,41(3):114-118. [4] 刘晓光.二类油层高质量浓度聚合物溶液性能及机理[J].大庆石油学院学报,2009,33(3):64-68. Liu Xiaoguang.Roperties and mechanism of high mass concentration polymer solution in sub-layers[J].Journal of Daqing Petroleum Institute,2009,33(3):64-68. [5] 宋新旺,李哲.缔合聚合物在多孔介质中的渗流运移特征[J].油气地质与采收率,2012,19(4):50-52. Song Xinwang,Li Zhe.Study on seepage characteristics of hydrophobic associated polymer in porous media[J].Petroleum Geology and Recovery Efficiency,2012,19(4):50-52. [6] 叶仲斌,苟光俊,苟绍华,等.丙烯酰胺四元共聚磺酸盐的合成及性能研究[J].化学研究与应用,2012,24(10):1560-1564. Ye Zhongbin,Gou Guangjun,Gou Shaohua,et al.Synthesis and properties for a acrylamide tetra-copolymer sulfonate[J].Chemical Research and Application,2012,24(10):1560-1564. [7] 韩玉贵,王秋霞,宋新旺,等.水溶性两性共聚物的表征及其溶液性质[J].石油化工,2007,36(5):507-512. Han Yugui,Wang Qiuxia,Song Xinwang,et al.Characterization and solution properties of a water soluble amphoteric copolymer[J].Petrochemical Technology,2007,36(5):507-512. [8] 朱怀江,罗健辉,杨静波,等.疏水缔合聚合物驱油能力的三种重要影响因素[J].石油学报,2005,26(3):52-55. Zhu Huaijiang,Luo Jianhui,Yang Jingbo,et al.Three key factors influencing oil-displacement capacity in hydrophobically associating polymer flooding[J].Acta Petrolei Sinica,2005,26(3):52-55. [9] 钟景兴,陈煜,谭惠民.AM/NVP二元共聚物的溶液性能[J].高分子材料科学与工程,2005,21(4):220-223. Zhong Jingxing,Chen Yu,Tan Huimin.Study on solution properties of AM/NVP copolymer[J].Polymer Materials Science Engineering,2005,21(4):220-223. [10] 韩玉贵,王秋霞,何绍群,等.水溶性AM/DMPS两性共聚物的反相乳液法制备及性能评价[J].精细石油化工进展,2005,6(10):32-34. Han Yugui,Wang Qiuxia,He Shaoqun,et al.Preparation of water soluble ampholytic AM/DMPS copolymer by inverse emulsion polymerization[J].Advances in Fine Petrochemicals,2005,6(10):32-34. [11] 韩玉贵.耐温抗盐驱油用化学剂研究进展[J].西南石油大学学报:自然科学版,2011,33(3):149-153. Han Yugui.Chemicals in heat tolerate and salt resistant flooding[J].Journal of Southwest Petroleum University:Science Technology Edition,2011,33(3):149-153. [12] 张书栋.胜坨油田高温高盐油藏疏水缔合聚合物驱油先导试验研究[J].精细石油化工进展,2014,15(6):28-31. Zhang Shudong.Pilot testing of hydrophobic association polymer (HAP)flooding in high temperature and high salinity reservoir in Shengtuo Oilfield[J].Advances in Fine Petrochemicals,2014,15(6):28-31. -
期刊类型引用(11)
1. 谭中良,贾红育,马涛,卢刚,许关利. 高钙镁油藏悬浮微晶聚合物体系研究. 应用化工. 2024(08): 1834-1837 . 百度学术
2. 梁丹,张健,周文胜,王励琪,刘媛,赵文森. 水平井非连续化学驱技术及其先导试验应用. 中国海上油气. 2023(06): 89-97 . 百度学术
3. 孙焕泉. 高温高盐油藏化学驱提高采收率技术发展与思考. 石油科技论坛. 2021(02): 1-7 . 百度学术
4. 陶光辉,束华东,刘斌. 古城油田B125区块稠油油藏超高分子量聚合物驱技术. 石油钻探技术. 2020(01): 66-71 . 本站查看
5. 徐辉,祝仰文,宋敏,庞雪君,孙秀芝. 温敏型聚合物驱油性能研究. 油气藏评价与开发. 2020(06): 53-57+64 . 百度学术
6. 李宗阳,王业飞,曹绪龙,祝仰文,徐辉,魏翠华,张新英. 新型耐温抗盐聚合物驱油体系设计评价及应用. 油气地质与采收率. 2019(02): 106-112 . 百度学术
7. 刘义刚,丁名臣,韩玉贵,王业飞,孟祥海,赵鹏,苑玉静. 低疏水单体含量缔合聚合物溶液驱油特性实验评价. 油田化学. 2018(02): 296-301 . 百度学术
8. 祝仰文. 超高分三元共聚物流变特性及驱油性能. 油气地质与采收率. 2018(06): 78-83 . 百度学术
9. 祝仰文,刘歌,曹绪龙,宋新旺,陈湧,刘育. 阴离子聚丙烯酰胺/三乙醇胺超分子体系的表征及性能. 高等学校化学学报. 2016(09): 1728-1732 . 百度学术
10. 赵方剑. 胜利油田化学驱提高采收率技术研究进展. 当代石油石化. 2016(10): 19-22 . 百度学术
11. 王琳,杨小华,林永学,何剑. 新型两性离子共聚物(AM/DEPS)的合成与评价. 石油钻探技术. 2016(05): 72-78 . 本站查看
其他类型引用(5)
计量
- 文章访问数: 2785
- HTML全文浏览量: 62
- PDF下载量: 4165
- 被引次数: 16