深水钻井喷射下导管水力参数优化设计方法

王磊, 张辉, 周宇阳, 柯珂, 张进双, 彭兴

王磊, 张辉, 周宇阳, 柯珂, 张进双, 彭兴. 深水钻井喷射下导管水力参数优化设计方法[J]. 石油钻探技术, 2015, 43(2): 19-24. DOI: 10.11911/syztjs.201502004
引用本文: 王磊, 张辉, 周宇阳, 柯珂, 张进双, 彭兴. 深水钻井喷射下导管水力参数优化设计方法[J]. 石油钻探技术, 2015, 43(2): 19-24. DOI: 10.11911/syztjs.201502004
Wang Lei, Zhang Hui, Zhou Yuyang, Ke Ke, Zhang Jinshuang, Peng Xing. Optimal Design of Hydraulic Parameters for Conductor Jetting in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2015, 43(2): 19-24. DOI: 10.11911/syztjs.201502004
Citation: Wang Lei, Zhang Hui, Zhou Yuyang, Ke Ke, Zhang Jinshuang, Peng Xing. Optimal Design of Hydraulic Parameters for Conductor Jetting in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2015, 43(2): 19-24. DOI: 10.11911/syztjs.201502004

深水钻井喷射下导管水力参数优化设计方法

基金项目: 

中国石化科技攻关项目“琼东南深水钻井关键技术研究”(编号:P13010)部分研究内容.

详细信息
    作者简介:

    王磊(1983—),男,辽宁锦州人,2007年毕业于中国石油大学(北京)海洋工程专业,2011年获中国石油大学(北京)岩土工程专业硕士学位,工程师,主要从事深水钻完井技术、岩石力学和地热能源开发成井技术研究.

  • 中图分类号: TE245

Optimal Design of Hydraulic Parameters for Conductor Jetting in Deepwater Drilling

  • 摘要: 针对目前现有深水钻井喷射下导管水力参数设计方法没有较强理论支撑的问题,以射流和岩土力学理论为基础,推导出了导管喷射下入临界出口速度及临界排量的计算公式,并据此提出了深水钻井喷射下导管水力参数的优化设计方法,给出了设计原则和设计步骤.分析了深水钻井喷射下导管常用钻头与导管组合采用不同直径喷嘴时的临界排量,对于φ660.4 mm钻头和φ762.0 mm导管的组合,喷嘴当量直径为24.0 mm时,临界排量为69.5 L/s;喷嘴当量直径为26.0~30.0 mm时,破土直径最大为762.0 mm.在排量一定的情况下,喷嘴当量直径越小,能够破碎地层的强度也越高.对西非深水JDZ区块深水钻井喷射下导管的水力参数进行设计,选用φ14.3 mm喷嘴时,设计排量与实钻排量对比,误差不超过10%,证明该优化设计方法的设计结果合理,可用于深水钻井喷射下导管水力参数设计,指导现场施工.
    Abstract: Considering that there is no strong theory support to the design of hydraulic parameters in conductor jetting in deep water drilling, the calculation formulas of critical jet outlet velocity and flow rate in jetting were derived based on the water jetting theory and rock mechanics, by which an optimal design methods, criteria and procedures were presented, and investigated. The combination patterns of different bits and conductors used in jetting, showing that the critical jet flow rate was 69.5 L/s for the combination of φ660.4 mm bit and φ762.0 mm conductor, with 24.0 mm equivalent nozzle diameter, and the maximum breaking diameter was 762.0 mm when the nozzle diameter was 26.0-30.0 mm. Given constant jet flow rate, the smaller the equivalent nozzle diameter, the greater the breaking strength is. Taking the design of hydraulic parameters in deep water jetting drilling in JDZ Block, West Africa, as example, the error between designed and actual jet flow rates was less than 10% if φ14.3 mm nozzle was used. It proved that this optimal design method was reasonable and it could be effectively used in design of hydraulic parameters in deepwater conductor jetting operations.
  • [1] 徐荣强,陈建兵,刘正礼,等.喷射导管技术在深水钻井作业中的应用[J].石油钻探技术,2007,35(3):19-22. Xu Rongqiang,Chen Jianbing Liu Zhengli,et al.The appliation of jetting technology in deepwater drilling[J].Petroleum Drilling Techniques,2007,35(3):19-22.
    [2] 刘正礼,叶吉华,田瑞瑞,等.南海深水表层导管水下打桩安装 技术适应性分析[J].石油钻探技术,2014,42(1):41-45. Liu Zhengli,Ye Jihua,Tian Ruirui,et al.Adaptability of underwater tamping for deepwater drilling conductor installation in South China Sea[J].Petroleum Drilling Techniques,2014,42(1):41-45.
    [3]

    Jeanjean P.Re-assessment of p-y curves for soft clays from centrifuge testing and finite element modeling[R].OTC 20158,2009.

    [4]

    Templeton J S.Finite element analysis of conductor seafloor interaction[R].OTC 20197,2009.

    [5]

    Evans T G,Feyereisen S,Rheaume G.Axial capacities of jetted well conductors in Angola[R].OSIG-02-325,2002.

    [6]

    Akers T J.Jetting of structural casing in deepwater environments:job design and operational practices[R].SPE 102378,2008.

    [7]

    John D H,Rod A C,Robert P H,et al.Batch drilling and positioning of subsea wells in the South China Sea[R].SPE 29909,1995.

    [8]

    Robert P H,Rod A C,John D H,et al.Liuhua 11-1 development-subsea conductor installation in the South China Sea[R].OTC 8174,1996.

    [9] 刘书杰,杨进,周建良,等.深水海底浅层喷射钻进过程中钻压与钻速关系[J].石油钻采工艺,2011,33(1):12-15. Liu Shujie,Yang Jin,Zhou Jianliang,et al.Research on relationship between weight-on-bit and drilling rate during jetting drilling in sub-bottom deepwater[J].Oil Drilling Production Technology,2011,33(1):12-15.
    [10] 付英军,姜伟,朱荣东.深水表层导管安装方法及风险控制技术研究[J].石油天然气学报,2011,33(6):153-157. Fu Yingjun,Jiang Wei,Zhu Rongdong.Installation method and risk control technology of surface conductors[J].Journal of Oil and Gas Technology,2011,33(6):153-157.
    [11] 汪顺文,杨进,严德,等.深水表层导管喷射钻进机理研究[J].石油天然气学报,2012, 34(8):157-160. Wang Shunwen,Yang Jin,Yan De,et al.Research of jetting drilling mechanism of surface conductor in deepwater[J].Journal of Oil and Gas Technology,2012,34(8):157-160.
    [12]

    Luke F E,Stephen C A,Roger N W,et al.Deepwater batchset operations through the magnolia shallow water flow sand[R].SPE 92289,2005.

    [13] 路保平,李国华.西非深水钻井完井关键技术[J].石油钻探技术,2013, 41(3):1-6. Lu Baoping,Li Guohua.Key technologies for deepwater drilling completion in West Africa[J].Petroleum Drilling Techniques,2013,41(3):1-6.
  • 期刊类型引用(12)

    1. 刘刚,李海峰,阿守燕,赵艳,高腾飞. 延长油田井下分层注水管柱双通道流量智能调节方法. 自动化与仪器仪表. 2025(02): 121-125 . 百度学术
    2. 刘晓欣. 多源数据集成下大庆油田套损机理及治理技术研究. 油气田地面工程. 2025(03): 51-57 . 百度学术
    3. 薛佺,郭永鑫,庞勇. 基于嵌入式单片机桥式同心分层注水一体化测调监测研究. 粘接. 2024(01): 165-168 . 百度学术
    4. 周军,史叶,梁光川,彭操. 分时电价下油田分压周期注水优化研究. 石油钻探技术. 2024(03): 106-111 . 本站查看
    5. 张福涛. 同心分注井在线电动验封仪研制及应用. 石油地质与工程. 2024(04): 101-104+111 . 百度学术
    6. 李石宽,牛媛,聂领,曾诚. 南堡滩海深井斜分注井测调问题原因分析及防治对策. 石化技术. 2024(12): 235-237 . 百度学术
    7. 赵洪绪,柴世超,毛敏,于伟强,李金泽,李庆庆,刘均荣. 基于长短期记忆神经网络模型的分层注水优化方法. 中国海上油气. 2023(04): 127-137 . 百度学术
    8. 葛丽珍,孟智强,祝晓林,岳宝林,朱志强. 气顶边水油藏中后期开发调整三维物理模拟研究. 石油钻探技术. 2023(06): 85-92 . 本站查看
    9. 赵广渊,王天慧,杨树坤,李翔,吕国胜,杜晓霞. 渤海油田液压控制智能分注优化关键技术. 石油钻探技术. 2022(01): 76-81 . 本站查看
    10. 张静,郑彬,李红英,刘玉娟,闫志明. 厚油层注采井间注入水纵向波及程度定量研究. 石油钻探技术. 2022(02): 118-125 . 本站查看
    11. 杨玲智,周志平,杨海恩,姬振宁. 桥式同心井下恒流分层注水技术. 石油钻探技术. 2022(04): 104-108 . 本站查看
    12. 杨玲智,周志平,杨海恩,李法龙,胡改星. 井下柔性复合管预置电缆数字式分注技术. 石油钻探技术. 2022(06): 120-125 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  3346
  • HTML全文浏览量:  145
  • PDF下载量:  4534
  • 被引次数: 15
出版历程
  • 收稿日期:  2014-07-17
  • 修回日期:  2014-11-19
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回