YIN Qishuai, ZHAI Yuqi, YAN Xinye, et al. Design and optimization of land-based test scheme for leakage emergency disposal equipment of deep-sea underwater production systems [J]. Petroleum Drilling Techniques, 2025, 53(3):67−76. DOI: 10.11911/syztjs.2025069
Citation: YIN Qishuai, ZHAI Yuqi, YAN Xinye, et al. Design and optimization of land-based test scheme for leakage emergency disposal equipment of deep-sea underwater production systems [J]. Petroleum Drilling Techniques, 2025, 53(3):67−76. DOI: 10.11911/syztjs.2025069

Design and Optimization of Land-Based Test Scheme for Leakage Emergency Disposal Equipment of Deep-Sea Underwater Production Systems

More Information
  • Received Date: February 09, 2025
  • Revised Date: May 11, 2025
  • Available Online: May 27, 2025
  • To construct a land-based full-process simulation test platform for leakage detection and emergency disposal equipment of deep-sea underwater production systems and address the absence of a standardized test environment in the research and development of deep-sea equipment, the similarity criteria of Reynolds and Froude were utilized to design a land-based full-process simulation system encompassing underwater wellheads, Christmas trees, crossover pipes, central manifolds, production risers, transmission risers, and submarine pipelines. This system aims to enable functions such as submarine pipeline leakage detection, manifold leakage localization, sealing performance evaluation of plugging devices, and pressure resistance testing of flexible pipes. The system provided a high-pressure and high-speed flow rate test environment capable of effectively simulating equipment performance under extreme operating conditions. Additionally, numerical simulations of flow field erosion for key system components were conducted using Fluent. Research findings indicate that areas with abrupt changes in fluid flow direction and increased velocity gradients are prone to induce turbulent erosion, particularly at locations where the velocity changes abruptly, resulting in severe erosion. Based on these insights, a structural optimization design strategy was proposed, which significantly mitigated erosion risks. As the industry’s first land-based full-process simulation system for deep-sea underwater production systems, this system offers a standardized test environment for the verification of underwater emergency disposal equipment research and development. Its innovative architecture and testing methods will substantially enhance the efficiency of equipment development and the reliability of testing outcomes.

  • [1]
    王红红,刘国恒. 中国海油海底管道事故统计及分析[J]. 中国海上油气,2017,29(5):157–160.

    WANG Honghong, LIU Guoheng. Statistics and analysis of subsea pipeline accidents of CNOOC[J]. China Offshore Oil and Gas, 2017, 29(5): 157–160.
    [2]
    肖仕红,唐鹏,孙传轩,等. 基于AHP的水下采油树海试模糊综合评价[J]. 石油钻采工艺,2019,41(3):335–340.

    XIAO Shihong, TANG Peng, SUN Chuanxuan, et al. AHP comprehensive fuzzy evaluation on sea trials of subsea Christmas tree[J]. Oil Drilling & Production Technology, 2019, 41(3): 335–340.
    [3]
    葛伟凤,孟庭宇,罗衡,等. 水下生产系统关键设备维修策略优化方法[J]. 科学技术与工程,2020,20(4):1400–1408. doi: 10.3969/j.issn.1671-1815.2020.04.016

    GE Weifeng, MENG Tingyu, LUO Heng, et al. Optimization method of key equipment maintenance strategy for subsea production system[J]. Science Technology and Engineering, 2020, 20(4): 1400–1408. doi: 10.3969/j.issn.1671-1815.2020.04.016
    [4]
    高原,魏会东,姜瑛,等. 深水水下生产系统及工艺设备技术现状与发展趋势[J]. 中国海上油气,2014,26(4):84–90.

    GAO Yuan, WEI Huidong, JIANG Ying, et al. Current technology and development trend of process facilities in deep water subsea production system[J]. China Offshore Oil and Gas, 2014, 26(4): 84–90.
    [5]
    王懿,段梦兰,焦晓楠. 深水油气开发装备发展现状及展望[J]. 石油机械,2013,41(10):51–55. doi: 10.3969/j.issn.1001-4578.2013.10.014

    WANG Yi, DUAN Menglan, JIAO Xiaonan. Current situation and prospect of deepwater petroleum development equipment[J]. China Petroleum Machinery, 2013, 41(10): 51–55. doi: 10.3969/j.issn.1001-4578.2013.10.014
    [6]
    魏行超,刘统亮,刘伟杰,等. 多工况载荷作用下脐带缆终端承载能力计算研究[J]. 科学技术与工程,2023,23(8):3260–3271. doi: 10.12404/j.issn.1671-1815.2023.23.08.03260

    WEI Xingchao, LIU Tongliang, LIU Weijie, et al. Structural capacity calculation of umbilical termination head under multi-load[J]. Science Technology and Engineering, 2023, 23(8): 3260–3271. doi: 10.12404/j.issn.1671-1815.2023.23.08.03260
    [7]
    张来斌,武胜男,林蓉. 深水水下生产系统损伤监测及预警技术现状与发展趋势[J]. 中国石油大学学报(自然科学版),2025,49(2):1–15. doi: 10.3969/j.issn.1673-5005.2025.02.001

    ZHANG Laibin, WU Shengnan, LIN Rong. Status and development trends of damage monitoring and early warning technologies for eepwater subsea production systems[J]. Journal of China University of Petroleum (Edition of Natural Science), 2025, 49(2): 1–15. doi: 10.3969/j.issn.1673-5005.2025.02.001
    [8]
    金晓剑,陈荣旗,朱晓环. 南海深水陆坡区油气集输的重大挑战与技术创新:荔湾3-1深水气田及周边气田水下及水上集输工程关键技术[J]. 中国海上油气,2018,30(3):157–163.

    JIN Xiaojian, CHEN Rongqi, ZHU Xiaohuan. Major challenges and technical innovations of oil & gas gathering and transporting for the deep water continental slope in the South China Sea: key technologies for subsea and overwater gathering and transporting project of the LW 3-1 deep water gas field & its surroundings[J]. China Offshore Oil and Gas, 2018, 30(3): 157–163.
    [9]
    王春升,陈国龙,石云,等. 南海流花深水油田群开发工程方案研究[J]. 中国海上油气,2020,32(3):143–151.

    WANG Chunsheng, CHEN Guolong, SHI Yun, et al. Engineering plans study on the development of Liuhua deep water oilfields in the South China Sea[J]. China Offshore Oil and Gas, 2020, 32(3): 143–151.
    [10]
    朱海山,李达. 陵水17-2气田 “深海一号”能源站总体设计及关键技术研究[J]. 中国海上油气,2021,33(3):160–169.

    ZHU Haishan, LI Da. Research on overall design and key technologies of “Deep Sea No. 1” energy station in LS17-2 Gas Field[J]. China Offshore Oil and Gas, 2021, 33(3): 160–169.
    [11]
    米立军,安维峥,陈宏举,等. 渤海浅水水下生产系统开发模式及国产化装备研制现状[J]. 中国海上油气,2023,35(3):137–146.

    MI Lijun, AN Weizheng, CHEN Hongju, et al. Development mode of the shallow water subsea production system in Bohai Sea area and the development status of localized equipments[J]. China Offshore Oil and Gas, 2023, 35(3): 137–146.
    [12]
    API RP 17A Design and operation of subsea production systems: general requirements and recommendations[S]. 2006.
    [13]
    NELSON R, BERGER R, TYER C. Pompano subsea development-testing program[R]. OTC 8208, 1996.
    [14]
    OVERGAARD I, BOLES B D, JENSEN O. Snorre subsea production systems: land test and installation experience[R]. OTC 7221, 1993.
    [15]
    梁稷,姚宝恒,曲有杰,等. 水下生产系统测试技术综述[J]. 中国测试,2012,38(1):38–40.

    LIANG Ji, YAO Baoheng, QU Youjie, et al. Review of testing technology for subsea production system[J]. China Measurement & Test, 2012, 38(1): 38–40.
    [16]
    韩峰,董楠,段梦兰,等. 水下跨接管与管道终端测试技术研究[J]. 石油矿场机械,2012,41(7):1–6. doi: 10.3969/j.issn.1001-3482.2012.07.001

    HAN Feng, DONG Nan, DUAN Menglan, et al. Testing technology of subsea jumper and PLET[J]. Oil Field Equipment, 2012, 41(7): 1–6. doi: 10.3969/j.issn.1001-3482.2012.07.001
    [17]
    陈斌,苏锋,张凡,等. 水下生产系统测试水池应用现状研究[J]. 石油机械,2014,42(2):45–48. doi: 10.3969/j.issn.1001-4578.2014.02.011

    CHEN Bin, SU Feng, ZHANG Fan, et al. Research on the current situation of test pit for subsea production system[J]. China Petroleum Machinery, 2014, 42(2): 45–48. doi: 10.3969/j.issn.1001-4578.2014.02.011
    [18]
    韩云峰,安维峥,洪毅. 我国水下生产系统测试技术进展[J]. 中国造船,2021,62(1):245–253. doi: 10.3969/j.issn.1000-4882.2021.01.024

    HAN Yunfeng, AN Weizheng, HONG Yi. Progress in testing technology of subsea production system in China[J]. Shipbuilding of China, 2021, 62(1): 245–253. doi: 10.3969/j.issn.1000-4882.2021.01.024
    [19]
    张云卫. 水下采油树系统地面测试单元研究[D]. 青岛:中国石油大学(华东),2015.

    ZHANG Yunwei. Research on ground test unit for subsea tree system[D]. Qingdao: China University of Petroleum(East China), 2015.
    [20]
    李清平,孙钦,程兵,等. 陵水17-2气田深水水下生产系统工程设计关键技术[J]. 中国海上油气,2021,33(3):180–188.

    LI Qingping, SUN Qin, CHENG Bing, et al. Key technologies for engineering design of deepwater subsea production system in LS17-2 gas field[J]. China Offshore Oil and Gas, 2021, 33(3): 180–188.
    [21]
    秦伟杰,张强,夏成宇,等. 盲通管与直弯管的内壁液固双相流冲蚀数值模拟初探[J]. 材料保护,2020,53(2):61–66.

    QIN Weijie, ZHANG Qiang, XIA Chengyu, et al. A preliminary study on the numerical simulation of liquid-solid two-phase erosion in inner wall of blind pipe and straight-bend pipe[J]. Materials Protection, 2020, 53(2): 61–66.
    [22]
    FORDER A, THEW M, HARRISON D. A numerical investigation of solid particle erosion experienced within oilfield control valves[J]. Wear, 1998, 216(2): 184–193. doi: 10.1016/S0043-1648(97)00217-2
    [23]
    季浪宇. 大颗粒固液两相流碰撞反弹规律及磨损特性研究[D]. 杭州:浙江理工大学,2017.

    JI Langyu. Study on the collision rule and erosion characteristic of solid-liquid two-phase flow with large particle diameter[D]. Hangzhou: Zhejiang Sci-Tech University, 2017.
    [24]
    吴书豪,张晓俊,梁义维,等. 外流式滑阀冲蚀磨损可视化分析及优化[J]. 机电工程,2022,39(4):467–473. doi: 10.3969/j.issn.1001-4551.2022.04.006

    WU Shuhao, ZHANG Xiaojun, LIANG Yiwei, et al. Visual analysis and optimization of erosion and wear of outflow spool valve[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(4): 467–473. doi: 10.3969/j.issn.1001-4551.2022.04.006
  • Cited by

    Periodical cited type(1)

    1. 汪俊,檀朝东,刁路青,陈培尭,冯钢,景霖茹,刘天宇,艾信. 低碳零碳智能采油气井场新型建设模式探讨. 钻采工艺. 2025(01): 199-206 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (28) PDF downloads (10) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return