ZHANG Yufei, GENG Tie, LIU Xiliang, et al. Research on low-corrosive, high temperature-resistant, high-density, and solid-free completion fluid [J]. Petroleum Drilling Techniques, 2025, 53(3):115−121. DOI: 10.11911/syztjs.2025064
Citation: ZHANG Yufei, GENG Tie, LIU Xiliang, et al. Research on low-corrosive, high temperature-resistant, high-density, and solid-free completion fluid [J]. Petroleum Drilling Techniques, 2025, 53(3):115−121. DOI: 10.11911/syztjs.2025064

Research on Low-Corrosive, High Temperature-Resistant, High-Density, and Solid-Free Completion Fluid

More Information
  • Received Date: February 07, 2025
  • Revised Date: May 11, 2025
  • Available Online: June 04, 2025
  • In order to meet the requirements of properties including high temperature resistance, high density, low corrosion rate, and reservoir protection, etc. for completion fluids under harsh working conditions in a high-temperature and high-pressure well in the South China Sea, the ratio of high valency metal salt ions was optimized to regulate the crystallization point and density gradient of the solution, and a high temperature-resistant, high-density, and solid-free completion fluid system was constructed. Through methods such as high-temperature aging experiments, corrosion testing, and permeability recovery testing, the key properties of the completion fluid, such as density stability, hydrate inhibition, corrosion rate, and reservoir protection, were tested. The results show that the density of the high-density and solid-free completion fluid can reach up to 1.85 kg/L. After aging at a temperature of 170 °C for 3 days, the density fluctuation was only 0.01 kg/L, indicating good natural gas hydrate inhibition performance and a crystallization temperature of less than −12.5 °C. The density change rate of the completion fluid under high-temperature and high-pressure conditions was only 3.8%. The corrosion rate was less than 0.076 mm/a, meeting the industry standard requirements. The average core permeability recovery value reached 87.94%. The field application has verified the effectiveness of the solid-free completion fluid in controlling the water lock effect, hydrate inhibition, and maintaining wellbore integrity. After the application of the completion fluid, positive production increase response was observed, and the actual gas production rate reached 133% of the design capacity. This solid-free completion fluid provides a new technical solution for high-temperature and high-pressure oil and gas field completion operations.

  • [1]
    孙金声,刘伟,王庆,等. 万米超深层油气钻完井关键技术面临挑战与发展展望[J]. 钻采工艺,2024,47(2):1–9. doi: 10.3969/J.ISSN.1006-768X.2024.02.01

    SUN Jinsheng, LIU Wei, WANG Qing, et al. Challenges and development prospects of oil and gas drilling and completion in myriametric deep formation in China[J]. Drilling & Production Technology, 2024, 47(2): 1–9. doi: 10.3969/J.ISSN.1006-768X.2024.02.01
    [2]
    张锦宏,张波,曹明,等. 中国石化“深地工程”油气测试关键技术及展望[J]. 石油钻探技术,2024,52(2):48–57. doi: 10.11911/syztjs.2024037

    ZHANG Jinhong, ZHANG Bo, CAO Ming, et al. Key technologies and prospects for oil and gas testing in Sinopec's “deep underground engineering”[J]. Petroleum Drilling Techniques, 2024, 52(2): 48–57. doi: 10.11911/syztjs.2024037
    [3]
    谭宾,张斌,陶怀志. 深地勘探钻井技术现状及发展思考[J]. 钻采工艺,2024,47(2):70–82. doi: 10.3969/J.ISSN.1006-768X.2024.02.09

    TAN Bin, ZHANG Bin, TAO Huaizhi. Current status and development considerations of deep exploration drilling technology[J]. Drilling & Production Technology, 2024, 47(2): 70–82. doi: 10.3969/J.ISSN.1006-768X.2024.02.09
    [4]
    RAZA A, MAHMOUD M, ALAFNAN S, et al. Role of high-density brines in reservoir development stages: a review[J]. Energy Geoscience, 2024, 5(3): 100304. doi: 10.1016/j.engeos.2024.100304
    [5]
    HUO Jinhua, ZHANG Xing. Preparation, investigation and corrosion mechanism of novel thermally stable high-density compound phosphate-based drill-in fluids for HTHP applications[J]. Journal of Molecular Liquids, 2023, 391(Part A): 123317.
    [6]
    SINGH R, SHARMA R, RAO G R. A comprehensive review on the high-density clear completion fluids for applications in HPHT well completion[J]. International Journal of Oil Gas and Coal Technology, 2023, 32(1): 70–92. doi: 10.1504/IJOGCT.2023.127337
    [7]
    刘虎,罗平亚,陈思安,等. 元坝区块超高温高密度饱和盐水钻井液体系优化与现场试验[J]. 钻采工艺,2023,46(5):124–132. doi: 10.3969/J.ISSN.1006-768X.2023.05.20

    LIU Hu, LUO Pingya, CHEN Sian, et al. Optimization and field test of ultra-high temperature high destiny saturated brine drilling fluid system in Yuanba Area, Sichuan[J]. Drilling & Production Technology, 2023, 46(5): 124–132. doi: 10.3969/J.ISSN.1006-768X.2023.05.20
    [8]
    张民立,庄伟,徐成金,等. 抗240 ℃高密度复合有机盐钻井液在翼探1井的应用[J]. 钻井液与完井液,2020,37(4):431–437. doi: 10.3969/j.issn.1001-5620.2020.04.005

    ZHANG Minli, ZHUANG Wei, XU Chengjin, et al. Application of ultra-high temperature high density compound organic salt drilling fluid in Well Jitan-1[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 431–437. doi: 10.3969/j.issn.1001-5620.2020.04.005
    [9]
    SINGH R, SHARMA S, RAO G R. Magnesium bromide as novel high-density packer fluid in oilfield applications[J]. Journal of Energy Resources Technology, 2023, 145(3): 033501. doi: 10.1115/1.4055319
    [10]
    SINGH R, SHARMA R, RAO G R. Rheological studies on a novel brine-based high density completion fluid for applications in oil and gas reservoirs[J]. International Journal of Oil Gas and Coal Technology, 2022, 31(4): 424–439. doi: 10.1504/IJOGCT.2022.126835
    [11]
    刘书杰,徐一龙,张宇飞,等. 水合物抑制剂的合成及在超深水钻井液中的应用[J]. 钻井液与完井液,2024,41(5):557–563. doi: 10.12358/j.issn.1001-5620.2024.05.002

    LIU Shujie, XU Yilong, ZHANG Yufei, et al. Synthesis of a hydrate inhibitor and its application in drilling fluids for ultra-deep water drilling[J]. Drilling Fluid & Completion Fluid, 2024, 41(5): 557–563. doi: 10.12358/j.issn.1001-5620.2024.05.002
    [12]
    冯明,廖波,王金堂,等. 海域天然气水合物完井液体系构建及性能评价[J]. 钻井液与完井液,2024,41(1):133–140. doi: 10.12358/j.issn.1001-5620.2024.01.016

    FENG Ming, LIAO Bo, WANG Jintang, et al. Offshore gas hydrate completion fluid system construction and performance evaluation[J]. Drilling Fluid & Completion Fluid, 2024, 41(1): 133–140. doi: 10.12358/j.issn.1001-5620.2024.01.016
    [13]
    吴艳辉,代锐,张磊,等. 深水井筒海水聚合物钻井液水合物生成抑制与堵塞物处理方法[J]. 钻井液与完井液,2023,40(4):415–422. doi: 10.12358/j.issn.1001-5620.2023.04.001

    WU Yanhui, DAI Rui, ZHANG Lei, et al. Study on methods of gas hydrate inhibition and blockage treatment using seawater polymer muds in deepwater well drilling[J]. Drilling Fluid & Completion Fluid, 2023, 40(4): 415–422. doi: 10.12358/j.issn.1001-5620.2023.04.001
    [14]
    强杰,董军,尹瑞新,等. 一种新型低成本防结垢复合盐高密度无固相压井液[J]. 钻井液与完井液,2020,37(3):394–397.

    QIANG Jie, DONG Jun, YIN Ruixin, et al. A new low-cost high-density solids free anti-scaling compound salt kill mud[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 394–397.
    [15]
    JIA Hu, HU Yaoxi, ZHAO Shanjie, et al. The feasibility for potassium-based phosphate brines to serve as high-density solid-free well-completion fluids in high-temperature/high-pressure formations[J]. SPE Journal, 2019, 24(5): 2033–2046. doi: 10.2118/194008-PA
    [16]
    HAN Fang, DONG Jun, WANG Xiaofang, et al. A study of new low-cost anti-scaling compound salt high-density solid-free killing fluid[J]. IOP Conference Series: Materials Science and Engineering, 2019, 490(6): 062047.
    [17]
    史凯娇,徐同台. 甲酸艳/钾无固相钻井液和完井液研究[J]. 石油钻探技术,2011,39(2):73–76. doi: 10.3969/j.issn.1001-0890.2011.02.014

    SHI Kaijiao, XU Tongtai. Research on cesium/potassium solid-free drilling and completion fluids[J]. Drilling Petroleum Techniques, 2011, 39(2): 73–76. doi: 10.3969/j.issn.1001-0890.2011.02.014
    [18]
    黎凌,周楚翔,吉永忠,等. 高密度高性能水基钻井液在巴基斯坦ADHI区块的研究与应用[J]. 钻井液与完井液,2025,42(1):82–89. doi: 10.12358/j.issn.1001-5620.2025.01.009

    LI Ling, ZHOU Chuxiang, JI Yongzhong, et al. High density and high performance drilling fluid system research and application at Pakistan north region ADHI block[J]. Drilling Fluid & Completion Fluid, 2025, 42(1): 82–89. doi: 10.12358/j.issn.1001-5620.2025.01.009
    [19]
    WANG Qingquan, BAI Yang, PENG Gang, et al. Drilling fluid development and performance evaluation of deep and ultra-deep high-density saturated brine[J]. Advanced Materials Research, 2012, 524/527: 1382–1388. doi: 10.4028/www.scientific.net/AMR.524-527.1382
    [20]
    刘均一,邱正松,黄维安,等. 南海东方气田高密度抗高温钻井液完井液室内研究[J]. 石油钻探技术,2013,41(4):78–82. doi: 10.3969/j.issn.1001-0890.2013.04.017

    LIU Junyi, QIU Zhengsong, HUANG Weian, et al. Laboratory research on high density and high temperature drilling and completion fluids for Dongfang Gas Field in South China Sea[J]. Petroleum Drilling Techniques, 2013, 41(4): 78–82. doi: 10.3969/j.issn.1001-0890.2013.04.017
    [21]
    HUO Jinhua, ZHANG Xing, CHE Yuanjun, et al. Preparation, characterization and application of environment-friendly high density and low damage solid free completion fluids for completing HTHP oil and gas wells[J]. Geoenergy Science and Engineering, 2023, 221: 211351. doi: 10.1016/j.geoen.2022.211351
    [22]
    杨旭,李皋,孟英峰,等. 低渗透气藏水锁损害定量评价模型[J]. 石油钻探技术,2019,47(1):101–106. doi: 10.11911/syztjs.2019008

    YANG Xu, LI Gao, MENG Yingfeng, et al. Quantitative evaluation model of water blocking damage in low permeability gas reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 101–106. doi: 10.11911/syztjs.2019008
    [23]
    单锴,邱正松,程征,等. 基于润湿性原位表征和亚临界水特性的高温储层水锁损害机理[J]. 钻井液与完井液,2025,42(2):187–194. doi: 10.12358/j.issn.1001-5620.2025.02.005

    SHAN Kai, QIU Zhengsong, CHENG Zheng, et al. Mechanisms of water block damage of high temperature reservoirs based on in-situ characterization of wettability and subcritical water characteristics[J]. Drilling Fluid & Completion Fluid, 2025, 42(2): 187–194. doi: 10.12358/j.issn.1001-5620.2025.02.005
    [24]
    王军平,曹青天,杨国栋,等. 一种应用于低渗透储层的高性能防水锁剂[J]. 钻井液与完井液,2024,41(3):337–343. doi: 10.12358/j.issn.1001-5620.2024.03.008

    WANG Junping, CAO Qingtian, YANG Guodong, et al. A high-performance waterproof lock agent for low permeability reservoir[J]. Drilling Fluid & Completion Fluid, 2024, 41(3): 337–343. doi: 10.12358/j.issn.1001-5620.2024.03.008
  • Related Articles

    [1]SUN Jinsheng, XU Chengyuan, KANG Yili, ZHANG Jie. Research Progress and Development Recommendations Covering Damage Mechanisms and Protection Technologies for Tight/Shale Oil and Gas Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 1-10. DOI: 10.11911/syztjs.2020068
    [2]FANG Junwei, ZHANG Yi, LI Shuanggui, YU Peizhi, LI Yinting. Acid-Soluble Temporary Plugging Technology for Ultra-Deep Fractured Carbonate Reservoirs in Block 1 of the Shunbei Area[J]. Petroleum Drilling Techniques, 2020, 48(2): 17-22. DOI: 10.11911/syztjs.2020006
    [3]FAN Fan, LIU Wei, JIA Jun. Clay-Free Drilling Fluid with Anti-Water Locking and Low Damage Performance Used in the Changbei Block[J]. Petroleum Drilling Techniques, 2019, 47(5): 34-39. DOI: 10.11911/syztjs.2019104
    [4]LIN Siyuan, ZHANG Jie, HAN Cheng, HU Jie, TIAN Zongqiang, ZHENG Haopeng. Key Technology for Horizontal Well of Extended Reach Drilling in the Shallow Reservoirs of the Dongfang Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(5): 17-21. DOI: 10.11911/syztjs.2019105
    [5]XIANG Xiong, YANG Honglie, LIU Xiliang, YOU Fuchang, ZHOU Shanshan. Research and Application of EZFLOW Solid-Free Weak Gel Drilling Fluid in Horizontal Wells in Shallow Gas Fields in the Western South China Sea[J]. Petroleum Drilling Techniques, 2018, 46(2): 38-43. DOI: 10.11911/syztjs.2018024
    [6]TENG Xueqing, KANG Yili, ZHANG Zhen, YOU Lijun, YANG Yuzeng, LIN Chong. Evaluation of Drilling and Completion Damage in Deep Medium-to-High Permeability Sandstone Reservoir in Tarim Basin[J]. Petroleum Drilling Techniques, 2018, 46(1): 37-43. DOI: 10.11911/syztjs.2018007
    [7]ZHANG Yaoyuan, MA Shuangzheng, WANG Guanxiang, HAN Xu, CUI Jie. A Study and Field Test for Solid-Free High Temperature Resistance Hydrophobic Association Polymer Drilling Fluid[J]. Petroleum Drilling Techniques, 2016, 44(6): 60-66. DOI: 10.11911/syztjs.201606010
    [8]Gao Fei, Lou Yishan, Wu Qiong, Li Zhonghui, Tang Lihua. Development and Application of Downhole Dynamic Corrosion Test Device[J]. Petroleum Drilling Techniques, 2014, 42(3): 112-117. DOI: 10.3969/j.issn.1001-0890.2014.03.021
    [9]Liu Xin, Zhao Nan, Yang Xianmin, He Zhanguo. Application of Strong Water Absorption Temporary Plugging Technique in Well Completion of Htubi Gas Storage[J]. Petroleum Drilling Techniques, 2013, 41(6): 72-77. DOI: 10.3969/j.issn.1001-0890.2013.06.014
    [10]Meng Xuan, Yang Xianmin. A Temporary Plugging Technology to Protect the Fractured Reservoir during Workover[J]. Petroleum Drilling Techniques, 2013, 41(1): 51-55. DOI: 10.3969/j.issn.1001-0890.2013.01.010
  • Cited by

    Periodical cited type(7)

    1. 孔安栋,杨德旺,郭金家,伍璐琭,燕傲霜,周发举,万亚旗. 腔增强气体拉曼光谱仪在气测录井中的应用. 光学精密工程. 2022(10): 1151-1159 .
    2. 智茂轩. 乙烯裂解气组成在线分析方法的研究及应用进展. 石油化工. 2021(06): 622-626 .
    3. 马维喆,董美蓉,黄泳如,童琪,韦丽萍,陆继东. 激光诱导击穿光谱的飞灰碳含量定量分析方法. 红外与激光工程. 2021(09): 201-210 .
    4. 董美蓉,韦丽萍,张勇升,陆继东. LIBS结合主导因素偏差修正的燃煤氢元素定量分析. 中国电机工程学报. 2020(20): 6617-6625 .
    5. 杨志强,佘明军,李油建. 激光在线识别岩性技术的影响因素分析与处理. 录井工程. 2019(02): 74-78+135 .
    6. 杨志强,李光泉,佘明军. 基于激光诱导击穿光谱的岩屑岩性在线识别试验研究. 石油钻探技术. 2019(04): 122-126 . 本站查看
    7. 万利,佘明军,邢允杰. 油基钻井液条件下的激光岩屑录井技术. 长江大学学报(自然科学版). 2019(12): 25-27+6 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (17) PDF downloads (8) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return