Citation: | FU Chenghang, ZHAO Le, CHEN Ling, et al. In-situ thermal insulation and pressure preservation sampling technologies for deepwater natural gas hydrate [J]. Petroleum Drilling Techniques, 2025, 53(3):146−155. DOI: 10.11911/syztjs.2025063 |
In view of the difficulty in maintaining in-situ temperature and pressure during sampling of deepwater natural gas hydrates, based on the geometric principle of the Steinmetz solid, materials resistant to high pressure, low temperature, seawater corrosion, and fatigue and with a long service life were selected. An in-situ self-triggering pressure preservation controller for marine deep water was developed to achieve stable sample pressure during the sampling process of deepwater hydrates. Based on the fundamental principles of heat transfer, a variety of active and passive thermal insulation technologies were developed. By using a self-developed temperature control system and coupling three thermal insulation schemes, namely semiconductor refrigeration, phase change-based latent heat energy storage, and hollow microsphere composite materials, a new type of composite thermal insulation technology was formed, which met the thermal insulation requirements of samples during the sampling process of deepwater hydrates. Based on the research results of key tools and technologies for thermal insulation and pressure preservation sampling, a penetrating in-situ thermal insulation and pressure preservation sampler for deepwater natural gas hydrates was developed. Two sea trial operations were completed using manned deep-sea submersibles, and samples of deepwater sediments (natural gas hydrates) maintaining in-situ temperature and pressure were successfully obtained in both cases. The research result provides key technical support for the safe and efficient development of deepwater natural gas hydrates. It will also strongly promote scientific research and engineering practice in the field of in-situ thermal insulation and pressure preservation in deep water.
[1] |
LIU Liping, SUN Zhilei, ZHANG Lei, et al. Progress in global gas hydrate development and production as a new energy resource[J]. Acta Geologica Sinica (English Edition), 2019, 93(3): 731–755. doi: 10.1111/1755-6724.13876
|
[2] |
金庆焕. 天然气水合物:未来的新能源[J]. 中国工程科学,2000,2(11):29–34. doi: 10.3969/j.issn.1009-1742.2000.11.005
JIN Qinghuan. Gas hydrate: a new future energy[J]. Strategic Study of CAE, 2000, 2(11): 29–34. doi: 10.3969/j.issn.1009-1742.2000.11.005
|
[3] |
姚伯初. 南海的天然气水合物矿藏[J]. 热带海洋学报,2001,20(2):20–28. doi: 10.3969/j.issn.1009-5470.2001.02.004
YAO Bochu. The gas hydrate in the South China Sea[J]. Journal of Tropical Oceanography, 2001, 20(2): 20–28. doi: 10.3969/j.issn.1009-5470.2001.02.004
|
[4] |
李常茂,耿瑞伦. 关于天然气水合物钻探的思考[J]. 探矿工程(岩土钻掘工程),2000(3):5–8.
LI Changmao, GENG Ruilun. Pondering over gas hydrates exploration drilling[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2000(3): 5–8.
|
[5] |
周守为,李清平,朱军龙,等. 中国南海天然气水合物开发面临的挑战与思考[J]. 天然气工业,2023,43(11):152–163. doi: 10.3787/j.issn.1000-0976.2023.11.015
ZHOU Shouwei, LI Qingping, ZHU Junlong, et al. Challenges and considerations for the development of natural gas hydrates in South China Sea[J]. Natural Gas Industry, 2023, 43(11): 152–163. doi: 10.3787/j.issn.1000-0976.2023.11.015
|
[6] |
蒋国盛,王荣璟,黎忠文,等. 天然气水合物的钻进过程控制和取样技术[J]. 探矿工程(岩土钻掘工程),2001(3):33–35.
JIANG Guosheng, WANG Rongjing, LI Zhongwen, et al. Drilling procedure control and sampling of gas hydrates[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2001(3): 33–35.
|
[7] |
KVENVOLDEN K A, BARNARD L A, CAMERON D H. Pressure core barrel: application to the study of gas hydrates, Deep Sea Drilling Project Site 533, Leg 76[R]. Washington, DC: U. S. Govt. Printing Office, 1983: 367-375.
|
[8] |
DICKENS G R, WALLACE P J, PAULL C K, et al. Detection of methane gas hydrate in the pressure core sampler (PCS): volume-pressure-time relations during controlled degassing experiments[J]. Proceedings of the Ocean Drilling Program: Scientific Results, 2000, 164: 113–126.
|
[9] |
MILKOV A V, DICKENS G R, CLAYPOOL G E, et al. Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at hydrate ridge (oregon margin): evidence from prolonged degassing of a pressurized core[J]. Earth and Planetary Science Letters, 2004, 222(3/4): 829–843.
|
[10] |
AMANN H, HOHNBERG H-J, REINELT R. HYACE: a novel autoclave coring equipment for systematic offshore gashydrate sampling[C]// Conference on Gas Hydrates-Noxious Substances or Resources, Tagung: Gashydrate-Problemstoff/Resource, Clausthal-Zellerfeld (Germany), 6-7 Nov. 1997. Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e. V, 1997: 37-49.
|
[11] |
SCHULTHEISS P, HOLLAND M, HUMPHREY G. Wireline coring and analysis under pressure: recent use and future developments of the HYACINTH system[J]. Scientific Drilling, 2009, 7: 44–50. doi: 10.5194/sd-7-44-2009
|
[12] |
MASAYUKI K, SATORU U, MASATO Y. Pressure temperature core sampler (PTCS)[J]. Journal of the Japanese Association for Petroleum Technology, 2006, 71(1): 139–147. doi: 10.3720/japt.71.139
|
[13] |
BOHRMANN G, KUHS W F, KLAPP S A, et al. Appearance and preservation of natural gas hydrate from hydrate ridge sampled during ODP Leg 204 drilling[J]. Marine Geology, 2007, 244(1/2/3/4): 1–14.
|
[14] |
HEESCHEN K U, HAECKEL M, HOHNBERG H-J, et al. Pressure coring at gas hydrate-bearing sites in the eastern Black Sea off Georgia[J]. Geophysical Research Abstracts, 2007, 9: 03078.
|
[15] |
HOHNBERG H-J, AMANN H, ABEGG F, et al. Pressurized coring of near-surface gas-hydrate sediments on hydrate ridge: the multiple autoclave corer, and first results from pressure-core X-ray CT scans[EB/OL]. [2025-02-24]. https://ui.adsabs.harvard.edu/abs/2003EAEJA...9128H/abstract.
|
[16] |
李世伦,程毅,秦华伟,等. 重力活塞式天然气水合物保真取样器的研制[J]. 浙江大学学报(工学版),2006,40(5):888–892. doi: 10.3785/j.issn.1008-973X.2006.05.033
LI Shilun, CHENG Yi, QIN Huawei, et al. Development of pressure piston corer for exploring natural gas hydrates[J]. Journal of Zhejiang University (Engineering Science), 2006, 40(5): 888–892. doi: 10.3785/j.issn.1008-973X.2006.05.033
|
[17] |
任红,许俊良,朱杰然. 天然气水合物非干扰绳索式保温保压取样钻具的研究[J]. 探矿工程(岩土钻掘工程),2012,39(6):1–4.
REN Hong, XU Junliang, ZHU Jieran. Development of non-interference wire-line pressure-temperature-preserving sampling drilling tool for gas hydrate[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2012, 39(6): 1–4.
|
[18] |
裴学良,任红,吴仲华,等. 天然气水合物岩心带压转移装置研制与现场试验[J]. 石油钻探技术,2018,46(3):49–52.
PEI Xueliang, REN Hong, WU Zhonghua, et al. Research and field test of a pressure-stabilizing transfer device for natural gas hydrate samples[J]. Petroleum Drilling Techniques, 2018, 46(3): 49–52.
|
[19] |
任红,裴学良,吴仲华,等. 天然气水合物保温保压取心工具研制及现场试验[J]. 石油钻探技术,2018,46(3):44–48.
REN Hong, PEI Xueliang, WU Zhonghua, et al. Development and field tests of pressure-temperature preservation coring tools for gas hydrate[J]. Petroleum Drilling Techniques, 2018, 46(3): 44–48.
|
[20] |
郭威,孙友宏,陈晨,等. FPCS型天然气水合物孔底冷冻保压取样器的设计[J]. 机械设计与制造,2011(1):24–26. doi: 10.3969/j.issn.1001-3997.2011.01.010
GUO Wei, SUN Youhong, CHEN Chen, et al. The design of the FPCS sample for gas hydrates by hole bottom freezing and pressure-tight[J]. Machinery Design & Manufacture, 2011(1): 24–26. doi: 10.3969/j.issn.1001-3997.2011.01.010
|
[21] |
SUN Shicai, GU Linlin, YANG Zhendong, et al. Thermophysical properties of natural gas hydrates: a review[J]. Natural Gas Industry B, 2022, 9(3): 246–263. doi: 10.1016/j.ngib.2022.04.003
|
[22] |
ABEGG F, HOHNBERG H-J, Pape T, et al. Development and application of pressure-core-sampling systems for the investigation of gas-and gas-hydrate-bearing sediments[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2008, 55(11): 1590–1599. doi: 10.1016/j.dsr.2008.06.006
|
[23] |
LI Cong, XIE Heping, GAO Mingzhong, et al. Novel designs of pressure controllers to enhance the upper pressure limit for gas-hydrate-bearing sediment sampling[J]. Energy, 2021, 227: 120405. doi: 10.1016/j.energy.2021.120405
|
[24] |
INADA N, YAMAMOTO K. Data report: hybrid pressure coring system tool review and summary of recovery result from gas-hydrate related coring in the Nankai Project[J]. Marine and Petroleum Geology, 2015, 66(part 2): 323-345.
|
[25] |
LUO Yongjiang, PENG Jianming, SUN Mingze, et al. An ice-valve-based pressure-coring system for sampling natural hydrate-bearing sediments: proof-of-concept laboratory studies[J]. Journal of Natural Gas Science and Engineering, 2015, 27(part 3): 1462-1469.
|
[26] |
WU Dongyu, PENG Jianming, SUN Mingze, et al. Experimental study on a pressure-coring technology based on a freeze-core valve for marine hydrate-bearing sediment sampling[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 135–142. doi: 10.1016/j.jngse.2016.05.023
|
[27] |
HU Yu, LUO Min, LIANG Qianyong, et al. Pore fluid compositions and inferred fluid flow patterns at the Haima cold seeps of the South China Sea[J]. Marine and Petroleum Geology, 2019, 103: 29–40. doi: 10.1016/j.marpetgeo.2019.01.007
|
[28] |
LIU Weining, WU Zijun, XU Sinan, et al. Pore-water dissolved inorganic carbon sources and cycling in the shallow sediments of the Haima cold seeps, South China Sea[J]. Journal of Asian Earth Sciences, 2020, 201: 104495. doi: 10.1016/j.jseaes.2020.104495
|
[29] |
HESSE R. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface[J]. Earth-Science Reviews, 2003, 61(1/2): 149–179.
|
[30] |
MALINVERNO A, KASTNER M, TORRES M E, et al. Gas hydrate occurrence from pore water chlorinity and downhole logs in a transect across the northern Cascadia margin (Integrated Ocean Drilling Program Expedition 311)[J]. Journal of Geophysical Research Solid Earth, 2008, 113(B8).
|
1. |
梁红军,刘洪涛,颜辉,陈凯枫,阳君奇,周智. 防斜打快技术在库车前陆区的实践应用. 新疆石油天然气. 2023(02): 49-55 .
![]() | |
2. |
马俊强,李飞,张光伟. 浅析煤层气参数井取芯段井斜超标原因及预防措施——基于平参2井. 中国煤层气. 2022(03): 21-25 .
![]() | |
3. |
李成嵩,王银生. 东营地区地热回灌井钻井完井技术研究与试验. 石油钻探技术. 2021(06): 50-54 .
![]() | |
4. |
张凯. 复合钻进技术在红柳煤矿冻结孔施工中的应用. 探矿工程(岩土钻掘工程). 2020(02): 54-58 .
![]() | |
5. |
路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 .
![]() | |
6. |
刘勇. 石油定向井常用钻具组合的分析与探讨. 中国石油石化. 2017(02): 3-4 .
![]() | |
7. |
李玮,李卓伦,刘伟卿,邱晓宁,陈世春. 扭转冲击提速工具在文安区块的现场应用. 特种油气藏. 2016(04): 144-146+158 .
![]() |