ZHENG Tiwen, GUO Shusheng, WANG Shiyue, et al. Study and application of riserless wireline logging scheme for ultra-deepwater and ultra-shallow layers [J]. Petroleum Drilling Techniques, 2025, 53(3):129−135. DOI: 10.11911/syztjs.2025054
Citation: ZHENG Tiwen, GUO Shusheng, WANG Shiyue, et al. Study and application of riserless wireline logging scheme for ultra-deepwater and ultra-shallow layers [J]. Petroleum Drilling Techniques, 2025, 53(3):129−135. DOI: 10.11911/syztjs.2025054

Study and Application of Riserless Wireline Logging Scheme for Ultra-Deepwater and Ultra-Shallow Layers

More Information
  • Received Date: January 19, 2025
  • Revised Date: May 11, 2025
  • Available Online: June 03, 2025
  • Drilling operations in ultra-deepwater and ultra-shallow wells in the South China Sea have short operating time, with riser running/retrieval occupying a significant time portion during drilling operations and incurring high costs. Riserless drilling effectively reduces both operating duration and expenses. However, riserless drilling in deepwater and shallow layers introduces new challenges for logging operations, including surface swells in open waters impacting cables and logging tools, difficulties in tool entry into subsea wellheads, and platform heave and shallow-layer conditions compromising tool sealing stability and operation safety. Through comparative analysis and verification of three existing logging schemes, an innovative riserless wireline logging scheme was developed, featuring casing suspension at the wellhead to isolate shallow-layer swells, remotely operated vehicles (ROV) assisting in precision logging tool deployment in well through real-time positioning and guidance, and enhanced sealing mechanisms with tension warning to ensure tool stability and operation safety. Field applications in the Qiongdongnan Basin of the South China Sea have demonstrated that this scheme has a good effect. It can achieve full coverage of operation projects from conventional logging to fixed-point logging, effectively reduce drilling costs, and ensure the acquisition of geological data, providing technical support for efficient exploration and development in ultra-deepwater and ultra-shallow layers.

  • [1]
    徐长贵,吴克强,裴健翔,等. 超深水超浅层天然气富集机理与成藏模式:以琼东南盆地陵水36−1气田为例[J]. 石油勘探与开发,2025,52(1):44–56. doi: 10.11698/PED.20240006

    XU Changgui, WU Keqiang, PEI Jianxiang, et al. Enrichment mechanisms and accumulation model of ultra-deep water and ultra-shallow gas: a case study of Lingshui 36−1 gas field in Qiongdongnan Basin, South China Sea[J]. Petroleum Exploration and Development, 2025, 52(1): 44–56. doi: 10.11698/PED.20240006
    [2]
    裴健翔,王宇. 琼东南盆地深水区第四系超浅层大型气藏盖层类型及封盖机理[J]. 地球科学,2025,50(1):144–157.

    PEI Jianxiang, WANG Yu. Caprock type and sealing mechanism of quaternary ultra shallow large gas reservoir in deep water area of Qiongdongnan Basin, China[J]. Earth Science, 2025, 50(1): 144–157.
    [3]
    吴克强,裴健翔,胡林,等. 莺歌海−琼东南盆地油气勘探新进展与思考[J]. 中国海上油气,2024,36(5):1–13.

    WU Keqiang, PEI Jianxiang, HU Lin, et al. New progress and thinking on oil and gas exploration in Yinggehai−Qiongdongnan Basin[J]. China Offshore Oil and Gas, 2024, 36(5): 1–13.
    [4]
    赵军,廖文海,汤翟,等. 深水浅层松散细粒水合物储层新型含水饱和度模型建立及应用[J]. 天然气地球科学,2025,36(2):197–208. doi: 10.11764/j.issn.1672-1926.2024.08.006

    ZHAO Jun, LIAO Wenhai, TANG Zhai, et al. Establishment and application of a new water saturation model for shallow and loose fine-grained hydrate reservoirs[J]. Natural Gas Geoscience, 2025, 36(2): 197–208. doi: 10.11764/j.issn.1672-1926.2024.08.006
    [5]
    幸雪松,袁俊亮,李忠慧,等. 南海深水高温高压条件下地层破裂压力的确定[J]. 石油钻探技术,2023,51(6):18–24. doi: 10.11911/syztjs.2023052

    XING Xuesong, YUAN Junliang, LI Zhonghui, et al. Determination of formation fracture pressure under high temperature and high pressure in deep water of the South China Sea[J]. Petroleum Drilling Techniques, 2023, 51(6): 18–24. doi: 10.11911/syztjs.2023052
    [6]
    李中. 中国海油“深海一号”大气田钻完井关键技术进展及展望[J]. 石油钻探技术,2023,51(4):88–94. doi: 10.11911/syztjs.2023031

    LI Zhong. Progress and prospect of key technologies for drilling and completion of “Deep Sea No.1” gas field of CNOOC[J]. Petroleum Drilling Techniques, 2023, 51(4): 88–94. doi: 10.11911/syztjs.2023031
    [7]
    杨进,李磊,宋宇,等. 中国海洋油气钻井技术发展现状及展望[J]. 石油学报,2023,44(12):2308–2318. doi: 10.7623/syxb202312019

    YANG Jin, LI Lei, SONG Yu, et al. Current status and prospects of offshore oil and gas drilling technology development in China[J]. Acta Petrolei Sinica, 2023, 44(12): 2308–2318. doi: 10.7623/syxb202312019
    [8]
    SRIPRAMOTE P, YINGVORAPANT W. Riser-less surveillance for aging subsea wellhead with light construction vessel[R]. OTC 31485, 2022.
    [9]
    张来斌,谢仁军,殷启帅. 深水油气开采风险评估及安全控制技术进展与发展建议[J]. 石油钻探技术,2023,51(4):55–65. doi: 10.11911/syztjs.2023036

    ZHANG Laibin, XIE Renjun, YIN Qishuai. Technical progress and development suggestions for risk assessment and safety control of deep-water oil and gas exploitation[J]. Petroleum Drilling Techniques, 2023, 51(4): 55–65. doi: 10.11911/syztjs.2023036
    [10]
    张炳军,宋宇,马正江,等. 测井工艺技术的发展与探析[J]. 测井技术,2022,46(6):651–655. doi: 10.16489/j.issn.1004–1338.2022.06.002

    ZHANG Bingjun, SONG Yu, MA Zhengjiang,et al. Review and analysis of the development for logging technology[J]. Well Logging Technology, 2022, 46(6): 651–655. doi: 10.16489/j.issn.1004–1338.2022.06.002
    [11]
    庞太西. 钻杆传输测井施工工艺研究[J]. 石化技术,2018,25(2):41–41.

    PANG Taixi. Study on construction technology of drill pipe transmission logging[J]. Petrochemical Industry Technology, 2018, 25(2): 41–41.
    [12]
    刘邦发,林敏,杨鸿超,等. 半潜式钻井平台超深水开路电缆测井施工方法与实现[J]. 中国石油和化工标准与质量,2024,44(10):151–153. doi: 10.3969/j.issn.1673-4076.2024.10.051

    LIU Bangfa, LIN Min, YANG Hongchao, et al. Operation methods and implementation of riserless wireline logging for semi-submersible drilling platforms in ultra-deep water[J]. China Petroleum and Chemical Standard and Quality, 2024, 44(10): 151–153. doi: 10.3969/j.issn.1673-4076.2024.10.051
    [13]
    高德利,张辉. 无隔水管深水钻井作业管柱的力学分析[J]. 科技导报,2012,30(4):37–42. doi: 10.3981/j.issn.1000-7857.2012.04.004

    GAO Deli, ZHANG Hui. Mechanical analysis of tubes in deepwater drilling operation without riser[J]. Science & Technology Review, 2012, 30(4): 37–42. doi: 10.3981/j.issn.1000-7857.2012.04.004
  • Related Articles

    [1]XING Xuesong, YUAN Junliang, LI Zhonghui, SUN Chong, ZHAO Yi. Determination of Formation Fracture Pressure under High Temperature and High Pressure in Deep Water of the South China Sea[J]. Petroleum Drilling Techniques, 2023, 51(6): 18-24. DOI: 10.11911/syztjs.2023052
    [2]WU Jiang, LI Yanjun, ZHANG Wandong, YANG Yuhao. Key Drilling Techniques of HTHP Horizontal Wells in Mid-Deep Strata of the Yinggehai Basin, South China Sea[J]. Petroleum Drilling Techniques, 2020, 48(2): 63-69. DOI: 10.11911/syztjs.2019112
    [3]ZHANG Weiguo, DI Mingli, LU Yunhu, ZHANG Jian, DU Xuan. Anti-Sloughing Drilling Fluid Technology for the Paleogene Shale Stratum of the Xijiang Oilfield in the South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(6): 40-47. DOI: 10.11911/syztjs.2019103
    [4]HAN Cheng, HUANG Kaiwen, LUO Ming, LIU Xianyu, DEND Wenbiao. Plugging Technology for HTHP Wells in the Yingqiong Basin of the South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(6): 15-20. DOI: 10.11911/syztjs.2019081
    [5]JU Ran, GUAN Zhichuan, HUANG Yi, LUO Ming, LI Wentuo, DENG Wenbiao. Optimization of the Casing-Wellbore Gap in Complex Strata of the Ying-Qiong Basin, South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(1): 32-36. DOI: 10.11911/syztjs.2019003
    [6]LIU Zhengli, YAN De. Key Drilling Techniques of Liwan22-1-1 Ultra-Deepwater Well in East of South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(1): 13-19. DOI: 10.11911/syztjs.2019026
    [7]LUO Ming, WU Jiang, CHEN Haodong, XIAO Ping. Ultra-High Temperature High Pressure Drilling Technology for Narrow Safety Density Window Strata in the Western South China[J]. Petroleum Drilling Techniques, 2019, 47(1): 8-12. DOI: 10.11911/syztjs.2019024
    [8]Sun Baojiang, Zhang Zhennan. Challenges and Countermeasures for the Drilling and Completion of Deepwater Wells in the South China Sea[J]. Petroleum Drilling Techniques, 2015, 43(4): 1-7. DOI: 10.11911/syztjs.201504001
    [9]Gu Chunwei, Luo Ming, Xu Yilong, Wu Jiang. Application of Tieback outside Casing in Horizontal Wells Drilled on Semi-Submersible Platforms[J]. Petroleum Drilling Techniques, 2014, 42(1): 46-49. DOI: 10.3969/j.issn.1001-0890.2014.01.009
    [10]Liu Zhengli, Ye Jihua, Tian Ruirui, Yan De. Adaptability of Underwater Tamping for Deepwater Drilling Conductor Installation in South China Sea[J]. Petroleum Drilling Techniques, 2014, 42(1): 41-45. DOI: 10.3969/j.issn.1001-0890.2014.01.008
  • Cited by

    Periodical cited type(15)

    1. 黄涛,钟颖,牟秋杭,严耀辉,李建林,张浩. 复杂缝网压裂二氧化碳悬浮支撑剂技术及悬砂性能. 油田化学. 2025(01): 38-43+51 .
    2. 王迪东,曹晶. 一步水热改性石英砂支撑剂及性能研究. 非金属矿. 2024(03): 5-9 .
    3. 张龙胜,王维恒. 双壳型覆膜支撑剂DSCP的研制及现场试验. 石油钻探技术. 2023(01): 91-97 . 本站查看
    4. 张敬春,任洪达,俞天喜,尹剑宇,周健,周洪涛. 压裂支撑剂研究与应用进展. 新疆石油天然气. 2023(01): 27-34 .
    5. 陈思源,刘浩,金衍,史爱萍,徐泉. 压裂支撑剂发展综述与展望. 石油科学通报. 2023(03): 330-346 .
    6. 任洪达,董景锋,高靓,刘凯新,张敬春,尹淑丽. 新疆油田玛湖砂岩储层自悬浮支撑剂现场试验. 油气藏评价与开发. 2023(04): 513-518 .
    7. 刘又铭,熊廷松,代安安,丁富寿,刘光杰. 压裂覆膜石英砂沉降机理研究及压裂施工排量优化. 石油石化节能. 2022(01): 47-50+11 .
    8. 梁莹. 自悬浮支撑剂研究进展及应用现状. 油气井测试. 2022(01): 47-51 .
    9. 毛峥,李亭,刘德华,杨琦. 水力压裂支撑剂应用现状与研究进展. 应用化工. 2022(02): 525-530+537 .
    10. 王磊. 牛庄洼陷官17井区沙四段页岩油自悬浮支撑剂压裂试验. 油气藏评价与开发. 2022(04): 684-689 .
    11. 黄博,雷林,汤文佳,徐宁蔚,熊炜. 自悬浮支撑剂清水携砂压裂增产机理研究. 油气藏评价与开发. 2021(03): 459-464 .
    12. 谭晓华,丁磊,胥伟冲,瞿霜,温中林. 覆膜支撑剂导气阻水效果可视化试验研究. 石油钻探技术. 2021(03): 117-123 . 本站查看
    13. 王兴文,何颂根,林立世,栗铁峰,王峻峰. 威荣区块深层页岩气井体积压裂技术. 断块油气田. 2021(06): 745-749 .
    14. 白云云,宋本凯. 煤层气水力压裂工艺新进展. 榆林学院学报. 2019(02): 13-16 .
    15. 田中原,卢祥国,曹伟佳,陈清,闫冬. 自悬浮与普通支撑剂裂缝导流能力实验研究. 石油化工高等学校学报. 2019(03): 33-38 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (14) PDF downloads (7) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return