LIU Houbin, WANG Shuang, DU Shuang, et al. Study on the dynamic evolution law of ground stress field in shale fractured reservoirs [J]. Petroleum Drilling Techniques, 2025, 53(4):1−9. DOI: 10.11911/syztjs.2025049
Citation: LIU Houbin, WANG Shuang, DU Shuang, et al. Study on the dynamic evolution law of ground stress field in shale fractured reservoirs [J]. Petroleum Drilling Techniques, 2025, 53(4):1−9. DOI: 10.11911/syztjs.2025049

Study on the Dynamic Evolution Law of Ground Stress Field in Shale Fractured Reservoirs

More Information
  • Received Date: May 09, 2024
  • Revised Date: July 03, 2025
  • Available Online: July 14, 2025
  • The stress environment of shale reservoirs undergoes dynamic changes during hydraulic fracturing operations, potentially inducing wellbore and formation damage. These changes directly influence the orientation and extent of fracture network propagation, subsequently impacting the optimization of fracturing strategies and ultimate development efficiency. To overcome the inability of conventional integrated geological and engineering 3D static models to accurately capture the dynamic evolution of the in-situ stress field during hydraulic fracturing, a 4D dynamic geostress-flow-stress fully coupled simulation method based on the finite difference method was developed. This approach comprehensively considers shale lamination heterogeneity, geomechanical properties, and the complexity of fracture network propagation. The simulation captures the complete process from the initial in-situ stress field under realistic formation conditions to stress perturbations induced by pore pressure diffusion during fracturing. It offers a multi-dimensional and multi-scale analysis of the impact of horizontal well hydraulic fracturing on regional stress fields. Results show that as hydraulic fractures initiate during the fracturing process, the fracturing fluid infiltrates the formation through the fracture network around the wellbore. This leads to an outward transmission of wellbore pressure, resulting in increased pore pressure and a reduction in effective and in-situ stresses, with the minimum horizontal stress showing the greatest decrease. With the expansion of the pressure-affected zone, pore pressure and in-situ stress variations are most pronounced near the wellbore. This results in stress concentration and a pressure-drop funnel effect relative to the undisturbed far-field formation, inducing formation deformation and compression that alter the orientation of the in-situ stress field. The integration of refined geological modeling with a fully coupled finite element framework for simulating dynamic in-situ stress fields in fractured reservoirs offers valuable insights and practical references for optimizing shale reservoir hydraulic fracturing in field applications.

  • [1]
    ZHANG Peng, MENG Zhaoping, JIANG Shu, et al. Characteristics of in-situ stress distribution in Zhengzhuang Region, southern Qinshui Basin, China and its stress path during depletion[J]. Engineering Geology, 2020, 264: 105413. doi: 10.1016/j.enggeo.2019.105413
    [2]
    ZHAO Jinzhou, QIANG Wang, HU Yongquan, et al. Prediction of pore pressure–induced stress changes during hydraulic fracturing of heterogeneous reservoirs through coupled fluid flow/geomechanics[J]. Journal of Engineering Mechanics, 2019, 145(12): 05019001. doi: 10.1061/(ASCE)EM.1943-7889.0001672
    [3]
    ALTMANN J B, MÜLLER B I R, MÜLLER T M, et al. Pore pressure stress coupling in 3D and consequences for reservoir stress states and fault reactivation[J]. Geothermics, 2014, 52: 195–205. doi: 10.1016/j.geothermics.2014.01.004
    [4]
    HADDAD M, EICHHUBL P. Poroelastic models for fault reactivation in response to concurrent injection and production in stacked reservoirs[J]. Geomechanics for Energy and the Environment, 2020, 24: 100181. doi: 10.1016/j.gete.2020.100181
    [5]
    SOLTANZADEH H, HAWKES C D. Assessing fault reactivation tendency within and surrounding porous reservoirs during fluid production or injection[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 1–7. doi: 10.1016/j.ijrmms.2008.03.008
    [6]
    ZHANG Fengshou, YIN Zirui, CHEN Zhaowei, et al. Fault reactivation and induced seismicity during multistage hydraulic fracturing: Microseismic analysis and geomechanical modeling[J]. SPE Journal, 2020, 25(2): 692–711. doi: 10.2118/199883-PA
    [7]
    HAN Lihong, YIN Fei, YANG Shangyu, et al. Coupled seepage-mechanical modeling to evaluate formation deformation and casing failure in waterflooding oilfields[J]. Journal of Petroleum Science and Engineering, 2019, 180: 124–129. doi: 10.1016/j.petrol.2019.05.035
    [8]
    ROUSSEL N P, SHARMA M M. Quantifying transient effects in altered-stress refracturing of vertical wells[J]. SPE Journal, 2010, 15(3): 770–782. doi: 10.2118/119522-PA
    [9]
    ROUSSEL N P, FLOREZ H A, RODRIGUEZ A A. Hydraulic fracture propagation from infill horizontal wells[R]. SPE 166503, 2013.
    [10]
    ZHANG Guangqing, CHEN Mian. Dynamic fracture propagation in hydraulic re-fracturing[J]. Journal of Petroleum Science and Engineering, 2010, 70(3/4): 266–272.
    [11]
    SU Yu, ZHANG Shilong, FU Jianhong, et al. Analysis of casing stress during multistage fracturing of shale gas horizontal wells considering thermo-hydro-mechanical coupling[J]. Energy Science & Engineering, 2023, 11(8): 2851–2865.
    [12]
    LU Zongyu, LIAN Wei, LI Jun, et al. Analysis of influencing factors of slippage and the dynamic process of fault slip caused by multi-stage fracturing[J]. Processes, 2024, 12(3): 448. doi: 10.3390/pr12030448
    [13]
    秦勇,李保柱,胡水清,等. 玛湖凹陷致密砾岩油藏四维地应力场模拟研究与应用[J]. 石油科技论坛,2022,41(2):23–31. doi: 10.3969/j.issn.1002-302x.2022.02.003

    QIN Yong, LI Baozhu, HU Shuiqing, et al. Numerical simulation of four-dimensional stress field for tight glutenite reservoir in Mahu Sag, Junggar Basin[J]. Petroleum Science and Technology Forum, 2022, 41(2): 23–31. doi: 10.3969/j.issn.1002-302x.2022.02.003
    [14]
    HATCHELL P, BOURNE S. Rocks under strain: Strain-induced time-lapse time shifts are observed for depleting reservoirs[J]. The Leading Edge, 2005, 24(12): 1222–1225. doi: 10.1190/1.2149624
    [15]
    HERWANGER J, KOUTSABELOULIS N. Seismic geomechanics: How to build and calibrate geomechanical models using 3D and 4D seismic data[M]. Houten: European Association of Geoscientists & Engineers, 2011.
    [16]
    ONAISI A, FIORE J, RODRIGUEZ-HERRERA A, et al. Matching stress-induced 4d seismic time-shifts with coupled geomechanical models[R]. ARMA 2015-801, 2015.
    [17]
    YANG D, MORIDIS G J, BLASINGAME T A. A fully coupled multiphase flow and geomechanics solver for highly heterogeneous porous media[J]. Journal of Computational and Applied Mathematics, 2014, 270: 417–432. doi: 10.1016/j.cam.2013.12.029
    [18]
    GUO Xuyang, SONG Hongqing, WU Kan, et al. Pressure characteristics and performance of multi-stage fractured horizontal well in shale gas reservoirs with coupled flow and geomechanics[J]. Journal of Petroleum Science and Engineering, 2018, 163: 1–15. doi: 10.1016/j.petrol.2017.12.038
    [19]
    张滨海,陈峥嵘,艾传志,等. 四维动态地应力建模方法及其在寿阳区块煤层气开发中的应用[J]. 中国海上油气,2018,30(4):144–151.

    ZHANG Binhai, CHEN Zhengrong, AI Chuanzhi, et al. 4D geomechanical modeling technique and its application in the coalbed methane development of Shouyang block[J]. China Offshore Oil and Gas, 2018, 30(4): 144–151.
    [20]
    张洪军,代波,于春生,等. 特低渗透油藏动态缝模拟[J]. 重庆科技学院学报(自然科学版),2020,22(6):1–6.

    ZHANG Hongjun, DAI Bo, YU Chunsheng, et al. Simulation method of dynamic fracture in ultra-low permeability reservoirs[J]. Journal of Chongqing University of Science and Technology(Natural Science Edition), 2020, 22(6): 1–6.
    [21]
    朱海燕,宋宇家,唐煊赫,等. 页岩气藏加密井压裂时机优化:以四川盆地涪陵页岩气田X1井组为例[J]. 天然气工业,2021,41(1):154–168.

    ZHU Haiyan, SONG Yujia, TANG Xuanhe, et al. Optimization of fracturing timing of infill wells in shale gas reservoirs: a case study on Well Group X1 of Fuling shale gas field in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 154–168.
    [22]
    朱海燕,宋宇家,胥云,等. 页岩气储层四维地应力演化及加密井复杂裂缝扩展规律[J]. 石油学报,2021,42(9):1224–1236. doi: 10.7623/syxb202109009

    ZHU Haiyan, SONG Yujia, XU Yun, et al. Four-dimensional in-situ stress evolution of shale gas reservoirs and its impact on infill well complex fractures propagation[J]. Acta Petrolei Sinica, 2021, 42(9): 1224–1236. doi: 10.7623/syxb202109009
    [23]
    李奎东. 涪陵页岩气藏开采动态地应力演化规律研究[J]. 钻采工艺,2023,46(1):97–102. doi: 10.3969/J.ISSN.1006-768X.2023.01.15

    LI Kuidong. Study on dynamic geostress evolution law during Fuling shale gas extraction[J]. Drilling & Production Technology, 2023, 46(1): 97–102. doi: 10.3969/J.ISSN.1006-768X.2023.01.15
    [24]
    朱海燕,宋宇家,雷征东,等. 致密油水平井注采储集层四维地应力演化规律:以鄂尔多斯盆地元284区块为例[J]. 石油勘探与开发,2022,49(1):136–147. doi: 10.11698/PED.2022.01.12

    ZHU Haiyan, SONG Yujia, LEI Zhengdong, et al. 4D-stress evolution of tight sandstone reservoir during horizontal wells injection and production: A case study of Yuan 284 block, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 136–147. doi: 10.11698/PED.2022.01.12
    [25]
    ZHU Haiyan, ZHAO Xing, GUO Jianchun, et al. Coupled flow-stress-damage simulation of deviated-wellbore fracturing in hard-rock[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 711–724. doi: 10.1016/j.jngse.2015.07.007
  • Related Articles

    [1]YAN Mingfei, JIN Yan, WEI Shiming, XIA Yang, CHEN Mian. Study on Evolution Law of Fracture Toughness of Ultra-Deep Laminated Shale[J]. Petroleum Drilling Techniques, 2025, 53(2): 159-167. DOI: 10.11911/syztjs.2025032
    [2]WANG Jinduo, WANG Yanbin, HE Ziqing, GAO Deli, ZENG Jing. Temperature and Pressure Coupling Field Distribution Law in Deepwater Drilling Wellbore under Gas Kick[J]. Petroleum Drilling Techniques, 2024, 52(6): 50-61. DOI: 10.11911/syztjs.2024108
    [3]ZHAO Huan, LI Wei, TANG Pengfei, WANG Xiao, ZHANG Minghui, WANG Jianbo. Study on the Distribution Law of Near-Wellbore in-situ Stress and Casing Load under Fracturing Conditions[J]. Petroleum Drilling Techniques, 2023, 51(5): 106-111. DOI: 10.11911/syztjs.2023092
    [4]JIN Yan, BO Kehao, ZHANG Yazhou, LU Yunhu. Advancements and Considerations of Chemo-Mechanical Coupling for Wellbore Stability in Deep Hard Brittle Shale[J]. Petroleum Drilling Techniques, 2023, 51(4): 159-169. DOI: 10.11911/syztjs.2023024
    [5]LU Ziqing. Geosteering Methods of a Dynamic Geological Model Based on Kalman Filter[J]. Petroleum Drilling Techniques, 2021, 49(1): 113-120. DOI: 10.11911/syztjs.2020135
    [6]JING Shuai, XIAO Li, ZHANG Haolin, WANG Xi, ZHANG Feifei. A Method for Minimizing Annulus Pressure Loss by means of Hole Cleaning and Hydraulics Coupling[J]. Petroleum Drilling Techniques, 2020, 48(2): 56-62. DOI: 10.11911/syztjs.2020009
    [7]HUANG Yuxin, HU Wangshui, YIN Shuai. Fracture Prediction Method for Coal-Bearing Tight Sandstone Reservoirs Based on a Dynamic Elastic Mechanics Model[J]. Petroleum Drilling Techniques, 2018, 46(5): 115-120. DOI: 10.11911/syztjs.2018082
    [8]XING Yuekun, ZHANG Guangqing, LI Shiyuan, WANG Yuanyuan, YANG Xiao. Identification of Similar Intervals of Wells with Casing Failure and Coring Wells and the Determination of their Geomechanical Properties[J]. Petroleum Drilling Techniques, 2017, 45(4): 33-40. DOI: 10.11911/syztjs.201704006
    [9]YANG Henglin, QIAO Lei, TIAN Zhonglan. Advances in Shale Gas Reservoir Engineering and Geomechanics Integration Technology and Relevant Discussions[J]. Petroleum Drilling Techniques, 2017, 45(2): 25-31. DOI: 10.11911/syztjs.201702005
    [10]He Miao, Liu Gonghui, Li Jun, Li Mengbo, Zha Chunqing, Li Gen. Solution and Analysis of Fully Transient Temperature and Pressure Coupling Model for Multiphase Flow[J]. Petroleum Drilling Techniques, 2015, 43(2): 25-32. DOI: 10.11911/syztjs.201502005
  • Cited by

    Periodical cited type(6)

    1. 赵楠,廖伟,李立,赵一潞,陈慧卿. 高盐高渗砂岩油藏泡沫调剖体系研究及应用. 石油化工应用. 2023(09): 112-116 .
    2. 闫月娟,曹宇航,刘崇江,李森,王尊策. 井下氮气泡沫发生器结构设计及发泡性能数值模拟. 机械设计. 2021(01): 64-71 .
    3. 巩权峰,魏学刚,辛懂. 油田堵水调剖剂的研究进展. 石油化工应用. 2021(01): 10-13 .
    4. 郭东红,李睿博,崔晓东,杨晓鹏,贾敏. 压力对改性α-烯烃磺酸盐起泡剂泡沫性能的影响. 精细石油化工. 2021(05): 10-13 .
    5. 崔晓东,黄小琼,郭东红,杨晓鹏,贾敏. 中低温、高矿化度油藏调驱用泡沫剂体系的研究. 精细与专用化学品. 2020(09): 16-18 .
    6. 李正辉,赵莉,陈菊涛,安金彪. 氮气驱与氮气泡沫驱技术适用性分析. 内蒙古石油化工. 2019(11): 83-85 .

    Other cited types(17)

Catalog

    Article Metrics

    Article views (29) PDF downloads (8) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return