Citation: | MA Guangjun, TANG Zhangwei, SUN Feng. Design of dynamic and static disc valves in static thrust-type mechanical vertical drilling tool and clearance flow analysis [J]. Petroleum Drilling Techniques, 2025, 53(2):88−96. DOI: 10.11911/syztjs.2025047 |
To solve the technical problem of anti-oblique drilling in the complex working conditions of deep wells and ultra-deep wells, the idea of developing a static thrust-type mechanical vertical drilling tool that can be used economically, safely, and reliably under the condition of high temperature and strong vibration was proposed. The friction resistance of the key components of the dynamic and static disc valve group was calculated, and the finite element analysis of the clearance flow of the ring valve was carried out. The ring valve structure and flow channel were designed based on the rapid shut-off response law of the high and low sides of the well, and the ground hydraulic bench test of the ϕ177.8 mm static thrust-type mechanical vertical drilling tool was carried out using the full size test bench. The results show that to reduce the friction area of the disc valve, a combination of two layers is recommended. The upper part is designed with a special-shaped hole and boss, and the lower part is designed with a special-shaped bypass. The hard alloy material is used for integral molding. The clearance between the upper and lower disc valves is controlled at 0.5 mm, and the height of the boss of the upper and lower disc valves is controlled at 0.25 mm. Through the ground bench test, it is proved that the dynamic and static disc valve group can direct and shunt the water flow normally. The performance index of sealing and pressure-holding has reached the expected design requirements. The results can provide a reference for structural design optimization of static thrust-type mechanical vertical drilling tools.
[1] |
苏义脑. 油气井工程中的一个新领域:井下控制工程学浅谈[J]. 地质科技情报,2005,24(增刊1):1−8.
SU Yinao. New field of oil and gas well engineering: discussion on theory of downhole control engineering[J]. Bulletin of Geological Science and Technology, 2005, 24(supplement 1): 1−8.
|
[2] |
张绍槐. 现代导向钻井技术的新进展及发展方向[J]. 石油学报,2003,24(3):82–85. doi: 10.3321/j.issn:0253-2697.2003.03.018
ZHANG Shaohuai. New progress and development direction of modern steering drilling techniques[J]. Acta Petrolei Sinica, 2003, 24(3): 82–85. doi: 10.3321/j.issn:0253-2697.2003.03.018
|
[3] |
孙峰,王瑞和. 垂钻系统单轴稳定平台测量算法[J]. 中国石油大学学报(自然科学版),2011,35(4):85–88. doi: 10.3969/j.issn.1673-5005.2011.04.015
SUN Feng, WANG Ruihe. Measurement algorithm in single-axis stabilized platform of vertical drilling system[J]. Journal of China University of Petroleum(Edition of Natural Science), 2011, 35(4): 85–88. doi: 10.3969/j.issn.1673-5005.2011.04.015
|
[4] |
孙峰,吕官云,马清明. 捷联式自动垂直钻井系统[J]. 石油学报,2011,32(2):360–363. doi: 10.7623/syxb201102029
SUN Feng, LYU Guanyun, MA Qingming. A strap-down automatic vertical drilling system[J]. Acta Petrolei Sinica, 2011, 32(2): 360–363. doi: 10.7623/syxb201102029
|
[5] |
孙峰,吕官云,陈威,等. 捷联式自动垂直钻井稳定平台控制系统仿真研究[J]. 石油钻探技术,2011,39(5):91–95. doi: 10.3969/j.issn.1001-0890.2011.05.020
SUN Feng, LYU Guanyun, CHEN Wei, et al. Research on strap-down automatic vertical drilling system with the simulation of stable platform control[J]. Drilling Petroleum Techniques, 2011, 39(5): 91–95. doi: 10.3969/j.issn.1001-0890.2011.05.020
|
[6] |
孙峰,陈威,王义峰. ϕ311 mm自动垂直钻井系统在宣页1井的应用[J]. 石油机械,2011,39(4):31–32.
SUN Feng, CHEN Wei, WANG Yifeng. The application of the ϕ311 mm automatic vertical drilling system in No. 1 Well of Xuanye[J]. China Petroleum Machinery, 2011, 39(4): 31–32.
|
[7] |
柴麟,张凯,刘宝林,等. 自动垂直钻井工具分类及发展现状[J]. 石油机械,2020,48(1):1–11.
CHAI Lin, ZHANG Kai, LIU Baolin, et al. Classification and development status of automatic vertical drilling tools[J]. China Petroleum Machinery, 2020, 48(1): 1–11.
|
[8] |
吴小雄,段树军,王前敏,等. 旋转推靠式自动垂直钻井工具应用分析[J]. 机械工程师,2023(1):115–117. doi: 10.3969/j.issn.1002-2333.2023.1.jxgcs202301033
WU Xiaoxiong, DUAN Shujun, WANG Qianmin, et al. Application analysis of rotating and pushing type automatic vertical drilling tool[J]. Mechanical Engineer, 2023(1): 115–117. doi: 10.3969/j.issn.1002-2333.2023.1.jxgcs202301033
|
[9] |
孙峰. 静态推靠机械式垂钻工具的研制及试验[J]. 石油机械,2025,53(3):32-37.
SUN Feng. Development and test of static pushing mechanical vertical drilling tool[J]. China Petroleum Machinery, 2025, 53(3): 32-37.
|
[10] |
马超群,张凯,柴麟,等. 机械式自动垂直钻具执行机构内部流场规律研究[J]. 工程设计学报,2022,29(3):384–393. doi: 10.3785/j.issn.1006-754X.2022.00.044
MA Chaoqun, ZHANG Kai, CHAI Lin, et al. Research on internal flow field law of mechanical automatic vertical drilling tool actuator[J]. Chinese Journal of Engineering Design, 2022, 29(3): 384–393. doi: 10.3785/j.issn.1006-754X.2022.00.044
|
[11] |
康建涛,苏海峰,张川,等. BH-VDT大尺寸垂直钻井工具设计优化与应用[J]. 长江大学学报(自然科学版),2021,18(6):63–68. doi: 10.3969/j.issn.1673-1409.2021.06.009
KANG Jiantao, SU Haifeng, ZHANG Chuan, et al. Design optimization and application of BH-VDT large size vertical drilling tool[J]. Journal of Yangtze University (Natural Science Edition), 2021, 18(6): 63–68. doi: 10.3969/j.issn.1673-1409.2021.06.009
|
[12] |
惠坤亮,吴小雄,游娜,等. 推靠式垂直钻井工具机械系统关键技术分析[J]. 机械工程师,2021(1):122–124.
HUI Kunliang, WU Xiaoxiong, YOU Na, et al. Key technologies analysis on mechanical system of push-the-bit vertical drilling tool[J]. Mechanical Engineer, 2021(1): 122–124.
|
[13] |
RAMALAKSHMI M, DODAGOUDAR G R. Lateral response analysis of GRS bridge abutments under passive push[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2018, 49(4): 49–54.
|
[14] |
李立鑫,薛启龙,刘宝林,等. 机械式自动垂直钻具的纠斜行为及研究进展[J]. 西安石油大学学报(自然科学版),2018,33(1):90–97. doi: 10.3969/j.issn.1673-064X.2018.01.015
LI Lixin, XUE Qilong, LIU Baolin, et al. Straightening behavior analysis and research progress of mechanical automatic vertical drilling tools[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2018, 33(1): 90–97. doi: 10.3969/j.issn.1673-064X.2018.01.015
|
[15] |
TJEMSLAND T H H. Evaluation of measurement-while-drilling, telemetry methods and integration of control systems[D]. Stavanger: University of Stavanger, 2012.
|
[16] |
李士斌,王业强,张立刚,等. 静态推靠式旋转导向控制方案分析及优化[J]. 石油钻采工艺,2015,37(4):12–15.
LI Shibin, WANG Yeqiang, ZHANG Ligang, et al. Analysis and optimization of static push-the-bit rotary steering control scheme[J]. Oil Drilling & Production Technology, 2015, 37(4): 12–15.
|
[17] |
史玉才,孙海芳,岳步江,等. 静态推靠式旋转导向钻井工具防自锁设计方法[J]. 中国石油大学学报(自然科学版),2017,41(5):80–86. doi: 10.3969/j.issn.1673-5005.2017.05.009
SHI Yucai, SUN Haifang, YUE Bujiang, et al. A design method to prevent self-locking of a static push-the-bit rotary steerable drilling tool[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(5): 80–86. doi: 10.3969/j.issn.1673-5005.2017.05.009
|
[18] |
HYLAND K B, LAING M, MATHIESON G, et al. HPHT wells spudded utilising a rotary steerable system below a 26-in×36-in hole opener to improve tophole drilling performance[R]. SPE 189639, 2018.
|
[19] |
曾宇,汪洪波,孙明波,等. SST湍流模型改进研究综述[J]. 航空学报,2023,44(9):98–129.
ZENG Yu, WANG Hongbo, SUN Mingbo, et al. SST turbulence model improvements: review[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 98–129.
|
[20] |
赵立新,朱宝军. 不同湍流模型在旋流器数值模拟中的应用[J]. 石油机械,2008,36(5):56–60.
ZHAO Lixin, ZHU Baojun. Application of different turbulence model in hydrocyclone numerical simulation[J]. China Petroleum Machinery, 2008, 36(5): 56–60.
|
1. |
张亚洲. 回接筒顶部修复工具的研制与应用. 钻采工艺. 2023(01): 110-114 .
![]() | |
2. |
王德坤,邓艾,周倩,刘运楼. 双鱼X井短回接插挂一体化固井技术实践. 天然气技术与经济. 2023(06): 16-20+87 .
![]() | |
3. |
杨玉豪,张万栋,韩成,张超,徐一龙,刘贤玉. 南海高温高压气田尾管回接管柱改进及入井质量控制. 断块油气田. 2020(02): 253-257 .
![]() | |
4. |
孙泽秋,魏钊,代红涛,覃毅,陈涛. 新型封隔式回接装置及工艺技术研究. 石油工业技术监督. 2018(07): 52-55 .
![]() | |
5. |
孙泽秋,代红涛,魏钊,丁玲玲,覃毅. 基于新型封隔式回接装置的尾管回接关键技术. 天然气与石油. 2018(02): 68-72 .
![]() | |
6. |
李鹏飞,邹传元,刘洪彬. 顺南区块系列特制固井工具的研制与应用. 钻采工艺. 2018(02): 26-29 .
![]() | |
7. |
王秀影,胡书宝,秦义,张彬,游子卫,黄海鸿. 雁翎潜山注气重力驱钻完井难点与对策. 断块油气田. 2017(04): 592-595 .
![]() | |
8. |
吴江,朱新华,李炎军,杨仲涵. 莺歌海盆地东方13-1气田高温高压尾管固井技术. 石油钻探技术. 2016(04): 17-21 .
![]() |