Citation: | YANG Qing, GUAN Yao, FENG Jin, et al. Permeability evaluation from logs in tight sandstone reservoirs based on classification and optimization of flow units [J]. Petroleum Drilling Techniques, 2025, 53(2):181−190. DOI: 10.11911/syztjs.2025043 |
Due to the strong heterogeneity of tight sandstone reservoirs, conventional log interpretation models usually overlook the difference in the longitudinal flow properties of the reservoirs, leading to low accuracy in the calculation and interpretation of permeability. Therefore, the flow units (FUs) of reservoirs were utilized to describe and quantify the heterogeneity characteristics of tight sandstone reservoirs. Permeability interpretation models of different FUs were constructed to improve the accuracy of permeability predictions. First, the FU classification standard was established by combining the frequency distribution and cumulative distribution probability of the experimental FU indicator (IFZ) from cores, and the optimal classification number of FUs was selected to establish permeability models in different categories. Additionally, deep neural networks (DNN) were introduced to predict IFZ by combining conventional logging and nuclear magnetic resonance (NMR) logging data. Finally, reservoir permeability was calculated based on the permeability interpretation models in different categories. This permeability calculation method was applied to the Paleogene Enping Formation in Huizhou Sag, Pearl River Mouth Basin, and five FU categories were selected for optimal classification. The identification and classification of FUs at the log scale were in good agreement with sedimentary facies, and the accuracy of permeability calculation was significantly improved compared to the NMR model. The research results provide a new calculation method for evaluating the permeability of deep tight sandstone reservoirs.
[1] |
贾爱林,位云生,郭智,等. 中国致密砂岩气开发现状与前景展望[J]. 天然气工业,2022,42(1):83–92. doi: 10.3787/j.issn.1000-0976.2022.01.008
JIA Ailin, WEI Yunsheng, GUO Zhi, et al. Development status and prospect of tight sandstone gas in China[J]. Natural Gas Industry, 2022, 42(1): 83–92. doi: 10.3787/j.issn.1000-0976.2022.01.008
|
[2] |
季汉生,张立宽,张立强,等. 基于自发渗吸接触角分布的致密砂岩油储层混合润湿性测量和表征[J]. 东北石油大学学报,2023,47(2):117–124. doi: 10.3969/j.issn.2095-4107.2023.02.010
JI Hansheng, ZHANG Likuan, ZHANG Liqiang, et al. Measurement and characterization of mixed wettability for tight sandstone based on spontaneous imbibition contact angle distribution[J]. Journal of Northeast Petroleum University, 2023, 47(2): 117–124. doi: 10.3969/j.issn.2095-4107.2023.02.010
|
[3] |
李登华,刘卓亚,张国生,等. 中美致密油成藏条件、分布特征和开发现状对比与启示[J]. 天然气地球科学,2017,28(7):1126–1138.
LI Denghua, LIU Zhuoya, ZHANG Guosheng, et al. Comparison and revelation of tight oil accumulation conditions, distribution characteristics and development status between China and U. S.[J]. Natural Gas Geoscience, 2017, 28(7): 1126–1138.
|
[4] |
路萍,王浩辰,高春云,等. 致密砂岩储层渗透率预测技术研究进展[J]. 地球物理学进展,2022,37(6):2428–2438. doi: 10.6038/pg2022FF0236
LU Ping, WANG Haochen, GAO Chunyun, et al. Research progress of permeability prediction technology for tight sandstone reservoirs[J]. Progress in Geophysics, 2022, 37(6): 2428–2438. doi: 10.6038/pg2022FF0236
|
[5] |
王谦,谭茂金,石玉江,等. 径向基函数神经网络法致密砂岩储层相对渗透率预测与含水率计算[J]. 石油地球物理勘探,2020,55(4):864–872.
WANG Qian, TAN Maojin, SHI Yujiang, et al. Prediction of relative permeability and calculation of water cut of tight sandstone reservoir based on radial basis function neural network[J]. Oil Geophysical Prospecting, 2020, 55(4): 864–872.
|
[6] |
时磊,王璞,刘俊州,等. 致密砂岩储层物性参数预测方法研究[J]. 石油物探,2020,59(1):98–107. doi: 10.3969/j.issn.1000-1441.2020.01.011
SHI Lei, WANG Pu, LIU Junzhou, et al. Physical properties prediction for tight sandstone reservoirs[J]. Geophysical Prospecting for Petroleum, 2020, 59(1): 98–107. doi: 10.3969/j.issn.1000-1441.2020.01.011
|
[7] |
张冲,张占松,张超谟. 基于等效岩石组分理论的渗透率解释模型[J]. 测井技术,2014,38(6):690–694. doi: 10.3969/j.issn.1004-1338.2014.06.010
ZHANG Chong, ZHANG Zhansong, ZHANG Chaomo. A permeability interpretation model based on equivalent rock elements theory[J]. Well Logging Technology, 2014, 38(6): 690–694. doi: 10.3969/j.issn.1004-1338.2014.06.010
|
[8] |
KOZENY J. Ueber kapillare leitung des Wassers in Boden[J]. Royal Academy of Sciencc Vienna Proc, 1927, 136(2a): 271–306.
|
[9] |
CARMAN P C. Permeability of saturated sands, soils and clays[J]. The Journal of Agricultural Science, 1939, 29(2): 262–273. doi: 10.1017/S0021859600051789
|
[10] |
TIMUR A. An investigation of permeability, porosity, & residual water saturation relationships for sandstone reservoirs[J]. The Log Analyst, 1968, 9(4): 8–17.
|
[11] |
KENYON W E, DAY P I, STRALEY C, et al. A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones[J]. SPE Formation Evaluation, 1988, 3(3): 622–636. doi: 10.2118/15643-PA
|
[12] |
李荣强,高莹,杨永飞,等. 基于CT扫描的岩心压敏效应实验研究[J]. 石油钻探技术,2015,43(5):37–43.
LI Rongqiang, GAO Ying, YANG Yongfei, et al. Experimental study on the pressure sensitive effects of cores based on CT scanning[J]. Petroleum Drilling Techniques, 2015, 43(5): 37–43.
|
[13] |
王清辉,朱明,冯进,等. 基于渗透率合成技术的砂岩油藏产能预测方法[J]. 石油钻探技术,2021,49(6):105–112.
WANG Qinghui, ZHU Ming, FENG Jin, et al. A method for predicting productivity of sandstone reservoirs based on permeability synthesis technology[J]. Petroleum Drilling Techniques, 2021, 49(6): 105–112.
|
[14] |
邓浩阳. 高孔低渗碳酸盐岩储层孔隙结构及物性表征方法研究[D]. 成都:西南石油大学,2018.
DENG Haoyang. The evaluation method of pore structure and physical property in carbonate rock reservoir with high porosity and low permeability[D]. Chengdu: Southwest Petroleum University, 2018.
|
[15] |
周雪晴,张占松,张超谟,等. 基于粗糙集:随机森林算法的复杂岩性识别[J]. 大庆石油地质与开发,2017,36(6):127–133.
ZHOU Xueqing, ZHANG Zhansong, ZHANG Chaomo, et al. Complex lithologic identification based on rough set-random forest algorism[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(6): 127–133.
|
[16] |
郭建宏,张占松,张超谟,等. 用地球物理测井资料预测煤层气含量:基于斜率关联度—随机森林方法的工作案例[J]. 物探与化探,2021,45(1):18–28.
GUO Jianhong, ZHANG Zhansong, ZHANG Chaomo, et al. The exploration of predicting CBM content by geophysical logging data: a case study based on slope correlation random forest method[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 18–28.
|
[17] |
闫星宇,顾汉明,肖逸飞,等. XGBoost算法在致密砂岩气储层测井解释中的应用[J]. 石油地球物理勘探,2019,54(2):447–455.
YAN Xingyu, GU Hanming, XIAO Yifei, et al. XGBoost algorithm applied in the interpretation of tight-sand gas reservoir on well logging data[J]. Oil Geophysical Prospecting, 2019, 54(2): 447–455.
|
[18] |
王远雄. 基于测井的改进TCN-Attention网络在储层孔隙度、渗透率预测中的应用[D]. 大庆:东北石油大学,2022.
WANG Yuanxiong. Application of improved TCN-attention network based on logging in reservoir porosity and permeability prediction[D]. Daqing: Northeast Petroleum University, 2022.
|
[19] |
杨旺旺,张冲,杨梦琼,等. 基于长短期记忆循环神经网络的伊拉克H油田碳酸盐岩储层渗透率测井评价[J]. 大庆石油地质与开发,2022,41(1):126–133.
YANG Wangwang, ZHANG Chong, YANG Mengqiong, et al. Permeability logging evaluation of carbonate reservoirs in Oilfield H of Iraq based on long short-term memory recurrent neural network[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(1): 126–133.
|
[20] |
AMRAEI H, FALAHAT R. Improved ST-FZI method for permeability estimation to include the impact of porosity type and lithology[J]. Journal of Petroleum Exploration and Production Technology, 2021, 11(1): 109–115. doi: 10.1007/s13202-020-01061-6
|
[21] |
高颖,高楚桥,赵彬,等. 基于储层分类计算东海低渗致密储层渗透率[J]. 断块油气田,2019,26(3):309–313.
GAO Ying, GAO Chuqiao, ZHAO Bin, et al. Permeability calculation based on reservoir classification for low permeability tight reservoirs in East China Sea[J]. Fault-Block Oil & Gas Field, 2019, 26(3): 309–313.
|
[22] |
HAMD-ALLAH S M, NOOR B M, WATTEN A R. Permeability prediction for Nahr-Umr reservoir/Subba field by using FZI method[J]. Journal of Engineering, 2016, 22(9): 160–171. doi: 10.31026/j.eng.2016.09.10
|
[23] |
KORONCZ P, VIZHÁNYÓ Z, FARKAS M P, et al. Experimental rock characterisation of Upper Pannonian sandstones from Szentes Geothermal Field, Hungary[J]. Energies, 2022, 15(23): 9136. doi: 10.3390/en15239136
|
[24] |
赵辉,齐怀彦,王凯,等. 致密砂岩油藏测井响应特征及有利区评价[J]. 特种油气藏,2023,30(5):35–41. doi: 10.3969/j.issn.1006-6535.2023.05.005
ZHAO Hui, QI Huaiyan, WANG Kai, et al. Characteristics of well logging response and evaluation of favorable zones in tight sandstone reservoirs[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 35–41. doi: 10.3969/j.issn.1006-6535.2023.05.005
|
[25] |
董春梅,林承焰,赵海朋,等. 基于流动单元的测井储层参数解释模型[J]. 测井技术,2006,30(5):425–428. doi: 10.3969/j.issn.1004-1338.2006.05.011
DONG Chunmei, LIN Chengyan, ZHAO Haipeng, et al. Model of well logging reservoir parameters interpretation based on flow units[J]. Well Logging Technology, 2006, 30(5): 425–428. doi: 10.3969/j.issn.1004-1338.2006.05.011
|
[26] |
葛祥,温丹妮,叶泰然,等. 川西气田雷四段白云岩储层流动单元测井评价方法[J]. 石油钻探技术,2023,51(6):120–127. doi: 10.11911/syztjs.2023049
GE Xiang, WEN Danni, YE Tairan, et al. Logging evaluation method of flow units in a dolomite reservoir in the 4th member of the Leikoupo Formation in western Sichuan Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(6): 120–127. doi: 10.11911/syztjs.2023049
|
[27] |
李熙盛. 强非均质性储层构型表征与流动单元智能分类评价[J]. 海洋地质前沿,2024,40(9):28–37.
LI Xisheng. Characterization of strongly heterogeneous reservoir architecture and intelligent classification evaluation of flow units[J]. Marine Geology Frontiers, 2024, 40(9): 28–37.
|
[28] |
王猛,刘志杰,杨玉卿,等. 基于区域测井大数据和实验资料的储层流动单元渗透率建模方法[J]. 地球物理学进展,2021,36(1):274–280. doi: 10.6038/pg2021EE0199
WANG Meng, LIU Zhijie, YANG Yuqing, et al. Permeability calculation in reservoir flow unit based on regional logging big data and experimental data[J]. Progress in Geophysics, 2021, 36(1): 274–280. doi: 10.6038/pg2021EE0199
|
[29] |
ALIZADEH N, RAHMATI N, NAJAFI A, et al. A novel approach by integrating the core derived FZI and well logging data into artificial neural network model for improved permeability prediction in a heterogeneous gas reservoir[J]. Journal of Petroleum Science and Engineering, 2022, 214: 110573. doi: 10.1016/j.petrol.2022.110573
|
[30] |
阿斯顿•张,李沐,扎卡里•C. 立顿,等. 动手学深度学习[M]. 北京:人民邮电出版社,2019:136-150.
ZHANG A, LI Mu, LIPTON Z C, et al. Dive into deep learning[M]. Beijing: Posts & Telecom Press, 2019: 136-150.
|
1. |
朱雷,潘金林,陈雪莲,马锐,田隆梅,周浩栋. 套管和水泥环尺寸对CBL/VDL测井套管波的影响研究. 石油钻探技术. 2025(01): 136-143 .
![]() | |
2. |
陈瑶,谭慧静,王胜,郑秀华,朱文茜,叶有. 地热井固井中硅酸盐水泥体系的技术现状及发展趋势. 钻探工程. 2025(03): 1-11 .
![]() | |
3. |
肖红,钱祎鸣. 基于改进DenseNet的固井质量评价新方法. 计算机技术与发展. 2024(01): 193-199 .
![]() | |
4. |
郑少军,谷怀蒙,刘天乐,陈宇,蒋国盛,王韧,代天,秦榜伟,徐浩,万涛. 基于紧密堆积理论的深水低密度三元固相水泥浆体系. 天然气工业. 2024(02): 122-131 .
![]() | |
5. |
张常瑞,张景富,朱胡佳,谢帅,谢雨辰,王建成. 超低密度水泥浆固井质量改进方法研究. 中国矿业. 2024(05): 181-186 .
![]() | |
6. |
肖红,钱祎鸣. 基于CNN-SVM和集成学习的固井质量评价方法. 吉林大学学报(理学版). 2024(04): 960-970 .
![]() | |
7. |
尚磊. 超低密度水泥固井质量评价方法研究. 石化技术. 2024(08): 215-217 .
![]() | |
8. |
朱雷,陈雪莲,张鑫磊,袁仕俊,王华伟,买振. 基于IBC和CBL/VDL测井的微间隙识别方法. 石油钻探技术. 2024(04): 135-142 .
![]() | |
9. |
邹卓峰,张宝权,李辉,王建华,王海涛,管震. 基于图像识别技术的固井质量评价方法研究. 钻探工程. 2024(S1): 104-111 .
![]() | |
10. |
张强. 文23储气库储层段钻井液及储层保护技术. 断块油气田. 2023(03): 517-522 .
![]() | |
11. |
任强,刘宁泽,罗文丽,高飞,刘景丽,刘岩,杨豫杭,程小伟. 泡沫减重水泥浆体系及其微观孔隙分布. 钻井液与完井液. 2023(03): 376-383 .
![]() | |
12. |
丁士东,陆沛青,郭印同,李早元,卢运虎,周仕明. 复杂环境下水泥环全生命周期密封完整性研究进展与展望. 石油钻探技术. 2023(04): 104-113 .
![]() | |
13. |
孙晓峰,陶亮,朱志勇,于福锐,孙铭浩,赵元喆,曲晶瑀. 页岩储层水平扩径井段固井顶替效率数值模拟研究. 特种油气藏. 2023(04): 139-145 .
![]() | |
14. |
黎红胜,温慧芸,文良凡,郑振国,陈玉平. 哥伦比亚VS-6、VS-8井固井问题分析及其对策. 石油工业技术监督. 2022(10): 63-68 .
![]() |