Citation: | ZHONG Haomiaomiao, SI Hu. Numerical simulation of natural gas hydrate reformation during gas recovery induced by depressurization[J]. Petroleum Drilling Techniques, 2025, 53(2):1−9. DOI: 10.11911/syztjs.2025040 |
To understand the impact of gas hydrate reformation on gas production efficiency and mining safety, a numerical model for hydrate reformation in vertical wells under depressurization was established using fluid dynamics and the finite difference method. The model simulated the location, region, spatiotemporal evolution, and quantity of secondary hydrate under different depressurization strategies. Results show that the hydrate dissociation front and the boundary of hydrate layers are the primary regions of hydrate reformation. Hydrate reformation of the hydrate dissociation front is usually earlier and greater accumulation further from the wellbore. The quantity of secondary hydrate initially decreases, then stabilizes and slightly increases in the middle stage, and finally increases due to insufficient heat supply. Different depressurization modes significantly impact hydrate reformation; step-wise depressurization (SD) can control the reformation range and delay the reformation time of the hydrate dissociation front compared to one-step depressurization (OD). The reformation quality of OD is inversely proportional to the depressurization decrement. Early-stage reformation quality of SD is inversely proportional to the depressurization decrement, while later-stage is directly proportional. These findings provide a theoretical basis for optimizing natural gas hydrate exploitation strategies.
[1] |
马通,祝鹏,陈鸣,等. 琼东南盆地天然气水合物储层参数测井评价及分析[J]. 断块油气田,2023,30(2):252–260. doi: 10.6056/dkyqt202302010
MA Tong, ZHU Peng, CHEN Ming, et al. Logging evaluation and analysis of reservoir parameter for natural gas hydrate in Qiongdongnan Basin[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 252–260. doi: 10.6056/dkyqt202302010
|
[2] |
张锦宏,周爱照,成海,等. 中国石化石油工程技术新进展与展望[J]. 石油钻探技术,2023,51(4):149–158. doi: 10.11911/syztjs.2023021
ZHANG Jinhong, ZHOU Aizhao, CHENG Hai, et al. New progress and prospects for Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 149–158. doi: 10.11911/syztjs.2023021
|
[3] |
张来斌,谢仁军,殷启帅. 深水油气开采风险评估及安全控制技术进展与发展建议[J]. 石油钻探技术,2023,51(4):55–65. doi: 10.11911/syztjs.2023036
ZHANG Laibin, XIE Renjun, YIN Qishuai. Technical progress and development suggestions for risk assessment and safety control of deep-water oil and gas exploitation[J]. Petroleum Drilling Techniques, 2023, 51(4): 55–65. doi: 10.11911/syztjs.2023036
|
[4] |
关富佳,苏向光,何万军. 天然气水合物CO2+N2驱替置换动力学研究[J]. 特种油气藏,2024,31(3):150–157.
GUAN Fujia, SU Xiangguang, HE Wanjun. Study on dynamics of gas hydrate CO2+N2 displacement[J]. Special Oil & Gas Reservoirs, 2024, 31(3): 150–157.
|
[5] |
张逸群,杜红星,王海柱,等. 双井周期注CO2联合降压法开采天然气水合物分析[J]. 天然气工业,2024,44(3):199–213. doi: 10.3787/j.issn.1000-0976.2024.03.017
ZHANG Yiqun, DU Hongxing, WANG Haizhu, et al. Dual-well cyclic CO2 injection assisted gas hydrate depressurization production[J]. Natural Gas Industry, 2024, 44(3): 199–213. doi: 10.3787/j.issn.1000-0976.2024.03.017
|
[6] |
QIN Xuwen, LIANG Qianyong, YE Jianliang, et al. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea[J]. Applied Energy, 2020, 278: 115649. doi: 10.1016/j.apenergy.2020.115649
|
[7] |
YANG Mingjun, ZHAO Jie, ZHENG Jianan, et al. Hydrate reformation characteristics in natural gas hydrate dissociation process: a review[J]. Applied Energy, 2019, 256: 113878. doi: 10.1016/j.apenergy.2019.113878
|
[8] |
李响,刘艺倬,李冰,等. 天然气水合物近井储层渗流规律模拟装置[J]. 石油机械,2024,52(7):10–18. doi: 10.1608/j.cnki.issn.1001-4578.2024.07.002
LIXiang, LIU Yizhuo, LIBing, et al. A simulator for flow in gas hydrate reservoir near wellbore[J]. China Petrleum Machinery , 2024, 52(7): 10–18. doi: 10.1608/j.cnki.issn.1001-4578.2024.07.002
|
[9] |
周守为,李清平,朱军龙,等. 中国南海天然气水合物开发面临的挑战与思考[J]. 天然气工业,2023,43(11):152–163. doi: 10.3787/j.issn.1000-0976.2023.11.015
ZHOU Shouwei, LI Qingping, ZHU Junlong, et al. Challenges and considerations for the development of natural gas hydrates in South China Sea[J]. Natural Gas Industry, 2023, 43(11): 152–163. doi: 10.3787/j.issn.1000-0976.2023.11.015
|
[10] |
KOU Xuan, LI Xiaosen, WANG Yi, et al. Distribution and reformation characteristics of gas hydrate during hydrate dissociation by thermal stimulation and depressurization methods[J]. Applied Energy, 2020, 277: 115575. doi: 10.1016/j.apenergy.2020.115575
|
[11] |
马超,秦绪文,孙金声,等. 天然气水合物降压开采过程井周水合物的二次形成[J]. 中国石油大学学报(自然科学版),2022,46(6):21–30. doi: 10.3969/j.issn.1673-5005.2022.06.003
MA Chao, QIN Xuwen, SUN Jinsheng, et al. Secondary hydrate formation in gas hydrate production by depressurization[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(6): 21–30. doi: 10.3969/j.issn.1673-5005.2022.06.003
|
[12] |
平晓琳,韩国庆,岑学齐,等. 降压开采海域天然气水合物电潜泵排采生产优化[J]. 石油钻采工艺,2022,44(2):225–232.
PING Xiaolin, HAN Guoqing, CEN Xueqi, et al. Drainage and production optimization of electric submersible pump for depressurization recovery of offshore natural gas hydrates[J]. Oil Drilling & Production Technology, 2022, 44(2): 225–232.
|
[13] |
赛福拉·地力木拉提,董长银,李彦龙,等. 砾石充填介质复合堵塞对天然气水合物储层产能的影响规律研究[J]. 石油钻探技术,2022,50(5):94–101. doi: 10.11911/syztjs.2022055
SAIFULLA Dilmurat, DONG Changyin, LI Yanlong, et al. Influence law of hybrid plugging of gravel-packed media on productivity in natural gas hydrate reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(5): 94–101. doi: 10.11911/syztjs.2022055
|
[14] |
WANG Bin, FAN Zhen, WANG Pengfei, et al. Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation[J]. Applied Energy, 2018, 227: 624–633. doi: 10.1016/j.apenergy.2017.09.109
|
[15] |
ZHAO Jiafei, LIU Yulong, GUO Xianwei, et al. Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization[J]. Applied Energy, 2020, 260: 114275. doi: 10.1016/j.apenergy.2019.114275
|
[16] |
LV Tao, LI Xiaosen, CHEN Zhaoyang, et al. Experimental investigation on the production behaviors of methane hydrate in sandy sediments by different depressurization strategies[J]. Energy Technology, 2018, 6(12): 2501–2511.
|
[17] |
WANG Jiaqi, HE Jiale, DONG Hongsheng, et al. Association between multiphase seepage and exploitation of natural gas hydrate based on the Shenhu area of South China Sea[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109855. doi: 10.1016/j.petrol.2021.109855
|
[18] |
GUO Xianwei, XU Lei, WANG Bin, et al. Optimized gas and water production from water-saturated hydrate-bearing sediment through step-wise depressurization combined with thermal stimulation[J]. Applied Energy, 2020, 276: 115438. doi: 10.1016/j.apenergy.2020.115438
|
[19] |
LI Jinfa, YE Jianliang, QIN Xuwen, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5–16. doi: 10.31035/cg2018003
|
[20] |
YU Tao, GUAN Guoqing, WANG Dayong, et al. Numerical investigation on the long-term gas production behavior at the 2017 Shenhu methane hydrate production site[J]. Applied Energy, 2021, 285: 116466. doi: 10.1016/j.apenergy.2021.116466
|
[21] |
ZHANG Wei, LIANG Jinqiang, WEI Jiangong, et al. Geological and geophysical features of and controls on occurrence and accumulation of gas hydrates in the first offshore gas-hydrate production test region in the Shenhu area, northern South China Sea[J]. Marine and Petroleum Geology, 2020, 114: 104191. doi: 10.1016/j.marpetgeo.2019.104191
|
[22] |
GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892–898. doi: 10.2136/sssaj1980.03615995004400050002x
|
[23] |
STONE H L. Probability model for estimating three-phase relative permeability[J]. Journal of Petroleum Technology, 1970, 22(2): 214–218. doi: 10.2118/2116-PA
|
[24] |
SELLM M S, SLOAN E D. Hydrate dissociation in sediment[J]. SPE Reservoir Engineering, 1990, 5(2): 245–251. doi: 10.2118/16859-PA
|
[25] |
MORIDIS G J. Numerical studies of gas production from methane hydrates[J]. SPE Journal, 2003, 8(4): 359–370. doi: 10.2118/87330-PA
|
[26] |
KIM H C, BISHNOI P R, HEIDEMANN R A, et al. Kinetics of methane hydrate decomposition[J]. Chemical Engineering Science, 1987, 42(7): 1645–1653. doi: 10.1016/0009-2509(87)80169-0
|
[27] |
MALEGAONKAR M B, DHOLABHAI P D, BISHNOI P R. Kinetics of carbon dioxide and methane hydrate formation[J]. The Canadian Journal of Chemical Engineering, 1997, 75(6): 1090–1099. doi: 10.1002/cjce.5450750612
|
[28] |
SUN Xuefei, MOHANTY K K. Kinetic simulation of methane hydrate formation and dissociation in porous media[J]. Chemical Engineering Science, 2006, 61(11): 3476–3495. doi: 10.1016/j.ces.2005.12.017
|
[29] |
崔伟,肖加奇. 应用数值模拟研究神狐海域水合物第一次试采数据[J]. 地球科学,2022,47(5):1890–1900. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205025
CUI Wei, XIAO Jiaqi. Numerical simulation for data analyses of first gas hydrate trial production test in Shenhu area[J]. Earth Science, 2022, 47(5): 1890–1900. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205025
|
[30] |
CHEN Lin, FENG Yongchang, OKAJIMA J, et al. Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu, South China Sea[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 55–66. doi: 10.1016/j.jngse.2018.02.029
|
[31] |
陈朝阳,游昌宇,吕涛,等. 南海北部天然气水合物藏垂直井网降压开采数值模拟[J]. 天然气工业,2020,40(8):177–185. doi: 10.3787/j.issn.1000-0976.2020.08.015
CHEN Zhaoyang, YOU Changyu, LYU Tao, et al. Numerical simulation of the depressurization production of natural gas hydrate reservoirs by vertical well patterns in the northern South China Sea[J]. Natural Gas Industry, 2020, 40(8): 177–185. doi: 10.3787/j.issn.1000-0976.2020.08.015
|
1. |
张萌. 测井信息融合下的地层精准评价模型构建与实践. 信息系统工程. 2025(02): 12-15 .
![]() | |
2. |
臧晓宇,邱正松,郭鹏飞,钟汉毅,赵欣. 微胶囊型堵漏剂的制备及裂缝封堵层强化效果研究. 应用化工. 2025(02): 277-281 .
![]() | |
3. |
罗俊如,丁言瑞,徐明华,胡超,刘炳官,孔维军,马强维,石林. 基于深度AUC最大化算法的井漏风险预测(英文). 常州大学学报(自然科学版). 2024(03): 34-44 .
![]() | |
4. |
孙伟峰,冯剑寒,张德志,李威桦,刘凯,戴永寿. 结合LSTM自编码器与集成学习的井漏智能识别方法. 石油钻探技术. 2024(03): 61-67 .
![]() |