Citation: | ZHANG Guodong, HE Yuchun, WANG Lei, et al. Intermittent pumping and air cushion combined operation sampling technology for ultra-low permeability gas reservoir formations[J]. Petroleum Drilling Techniques, 2025, 53(0):1−6. DOI: 10.11911/syztjs.2025039 |
Cable pump sampling is the fastest and most economical technical method for obtaining reservoir fluids in offshore exploration wells. However, ultra-low permeability gas reservoirs with complex pore structures and poor permeability (where pressure testing mobility mostly falls below 1.0 mD/(mPa·s) present challenges for conventional cable pump sampling methods in terms of efficiency and feasibility, often failing to meet operational requirements. Through technological breakthroughs including structural modification of large sample chambers, modular combination optimization, and simulation analysis of pumping pressure recovery in ultra-low permeability reservoirs, a novel formation pumping sampling technology featuring "intermittent pumping combined with gas cushion operation" has been developed. Field applications have demonstrated that this technology effectively enhances sampling success rates in ultra-low permeability gas reservoirs while reducing single-point sampling time and improving operational efficiency. The successful implementation of this technology provides crucial technical support for reserve evaluation and economically efficient development of offshore ultra-low permeability gas reservoirs..
[1] |
徐陈杰,叶加仁,刘金水,等. 东海西湖凹陷天然气成藏时期的关键证据:气烃包裹体[J]. 天然气工业,2021,41(11):64–73.
XU Chenjie, YE Jiaren, LIU Jinshui, et al. Key evidence of gas accumulation period in Xihu Sag of the East China Sea Shelf Basin: gas hydrocarbon inclusion[J]. Natural Gas Industry, 2021, 41(11): 64–73.
|
[2] |
张迎朝,陈忠云,刁慧,等. 东海盆地X凹陷油气成藏模式与勘探突破[J]. 中国海上油气,2024,36(2):1–12.
ZHANG Yingzhao, CHEN Zhongyun, DIAO Hui, et al. Reservoir-forming models and exploration breakthroughs in X sag of East China Sea Basin[J]. China Offshore Oil and Gas, 2024, 36(2): 1–12.
|
[3] |
李鹭光. 中国天然气工业发展回顾与前景展望[J]. 天然气工业,2021,41(8):1–11. doi: 10.3787/j.issn.1000-0976.2021.08.001
LI Luguang. Development of natural gas industry in China: review and prospect[J]. Natural Gas Industry, 2021, 41(8): 1–11. doi: 10.3787/j.issn.1000-0976.2021.08.001
|
[4] |
张国华. 西湖凹陷高压形成机制及其对油气成藏的影响[J]. 中国海上油气,2013,25(2):1–8.
ZHANG Guohua. Origin mechanism of high formation pressure and its influence on hydrocarbon accumulation in Xihu Sag[J]. China Offshore Oil and Gas, 2013, 25(2): 1–8.
|
[5] |
周心怀,高顺莉,高伟中,等. 东海陆架盆地西湖凹陷平北斜坡带海陆过渡型岩性油气藏形成与分布预测[J]. 中国石油勘探,2019,24(2):153–164.
ZHOU Xinhuai, GAO Shunli, GAO Weizhong, et al. Formation and distribution of marine-continental transitional lithologic reservoirs in Pingbei slope belt, Xihu sag, East China Sea Shelf Basin[J]. China Petroleum Exploration, 2019, 24(2): 153–164.
|
[6] |
张国栋,施荣富,王聃,等. 东海西湖凹陷低孔低渗储层电缆取样方法创新与应用[J]. 中国海上油气,2015,27(2):39–43.
ZHANG Guodong, SHI Rongfu, WANG Dan, et al. An innovative and effective way for cable sampling in ultra-tight reservoirs in Xihu Sag, East China Sea[J]. China Offshore Oil and Gas, 2015, 27(2): 39–43.
|
[7] |
周心怀. 西湖凹陷地质认识创新与油气勘探领域突破[J]. 中国海上油气,2020,32(1):1–12.
ZHOU Xinhuai. Geological understanding and innovation in Xihu Sag and breakthroughs in oil and gas exploration[J]. China Offshore Oil and Gas, 2020, 32(1): 1–12.
|
[8] |
施荣富. 西湖凹陷低孔低渗储层压裂改造技术体系探索与实践[J]. 中国海上油气,2013,25(2):79–82.
SHI Rongfu. Exploration and application of fracturing reconstruction technique for low porosity and low permeability reservoirs in Xihu Sag[J]. China Offshore Oil and Gas, 2013, 25(2): 79–82.
|
[9] |
刘金水,唐健程. 西湖凹陷低渗储层微观孔隙结构与渗流特征及其地质意义:以HY构造花港组为例[J]. 中国海上油气,2013,25(2):18–23.
LIU Jinshui, TANG Jiancheng. Mircoscopic pore texture and percolation features in the low permeability reservoirs and their geological significance in Xihu Sag: a case of Huagang Formation in HY structure[J]. China Offshore Oil and Gas, 2013, 25(2): 18–23.
|
[10] |
张宏,赵玉龙,蒋庄德. 电缆式地层测试器中的取样技术研究[J]. 西安石油大学学报(自然科学版),2005,20(6):63–67.
ZHANG Hong, ZHAO Yulong, JIANG Zhuangde. Sampling techniques in the wireline formation tester[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2005, 20(6): 63–67.
|
[11] |
SLB. MDT modular formation dynamics tester[EB/OL]. [2024-07-08]. https://www.slb.com/products-and-services/innovating-in-oil-and-gas/reservoir-characterization/surface-and-downhole-logging/wireline-openhole-logging/wireline-formation-testing/modular-formation-dynamics-tester.
|
[12] |
关文龙,李相方,侯洪为,等. 模块式地层测试器及其国内外研究动态[J]. 石油管材与仪器,2003,17(1):23–25.
GUAN Wenlong, LI Xiangfang, HOU Hongwei, et al. Modular formation tester and its research development[J]. Petroleum Tubular Goods & Instruments, 2003, 17(1): 23–25.
|
1. |
胡晋军,韩广海,张海峰,史为纪. 北黄海太阳盆地复杂深井小间隙尾管固井技术. 石油钻探技术. 2023(01): 40-44 .
![]() | |
2. |
曾义金. 中国石化深层超深层油气井固井技术新进展与发展建议. 石油钻探技术. 2023(04): 66-73 .
![]() |