SONG Qian. Development and field testing of a new targeted viscosity-enhancing oil displacement agent [J]. Petroleum Drilling Techniques, 2025, 53(2):168−174. DOI: 10.11911/syztjs.2025036
Citation: SONG Qian. Development and field testing of a new targeted viscosity-enhancing oil displacement agent [J]. Petroleum Drilling Techniques, 2025, 53(2):168−174. DOI: 10.11911/syztjs.2025036

Development and Field Testing of a New Targeted Viscosity-Enhancing Oil Displacement Agent

More Information
  • Received Date: February 26, 2024
  • Revised Date: February 25, 2025
  • Available Online: March 16, 2025
  • In view of the limitations of conventional polymer flooding, such as serious viscosity loss due to mechanical degradation during injection and weak flooding profile control ability in deep reservoirs, a novel targeted viscosity-enhancing oil displacement agent (TVP) was developed. It is formulated by encapsulating conventional polymers within microcapsule shells using inverse emulsion polymerization and interfacial in-situ polymerization technologies, inspired by microencapsulation techniques from other application fields. The release process of TVP was characterized by microscopic methods, and the influencing factors of TVP sustained-release, anti-shear performance, resistance coefficient before and after sustained-release, and oil displacement effect were studied. The results show that TVP is spherical with an average particle diameter of 600~800 nm before sustained release. The microcapsule shell can release polymers under high temperatures or high pH conditions. After release, the polymer will dissolve in water, forming a network structure, which can increase the aqueous phase viscosity to approximately 30 mPa·s at a mass concentration of 5000 mg/L. Protected by microcapsule shell, TVP has strong mechanical shear resistance, with only 3.3% viscosity loss after shearing. Before TVP sustained release, the resistance coefficient of core flooding is only about 3.0, indicating favorable injectivity. After sustained release, the resistance coefficient of core flooding rises to 36.88, achieving an incremental oil recovery of 26.7 percentage points, which demonstrates favorable sweep efficiency and oil displacement performance. Field trials of TVP were carried out, and the results showed that the average injection pressure of three water injectors increased by 6.4 MPa, the dynamic fluid level of two producers increased, the water cut decreased, and the daily oil production increased by 4.4 t, indicating preliminary favorable effectiveness of polymer injection. The results also show that TVP, as a new oil displacement agent, has the potential to significantly improve crude oil recovery in tertiary oil recovery.

  • [1]
    刘益嘉. 三次采油化学驱油技术策略[J]. 化学工程与装备,2022(2):41–42.

    LIU Yijia. Technical strategy of chemical flooding for tertiary oil recovery[J]. Chemical Engineering & Equipment, 2022(2): 41–42.
    [2]
    李刚,宋群华,高振东,等. 运用聚合物驱油技术提高采收率方法研究[J]. 当代化工,2022,51(8):1974–1977. doi: 10.3969/j.issn.1671-0460.2022.08.045

    LI Gang, SONG Qunhua, GAO Zhendong, et al. Study on improving oil recovery by using polymer flooding technology[J]. Contemporary Chemical Industry, 2022, 51(8): 1974–1977. doi: 10.3969/j.issn.1671-0460.2022.08.045
    [3]
    刘柬葳,彭勃. 交联聚合物微球在深部调驱中的应用[J]. 油田化学,2022,39(1):179–185.

    LIU Jianwei, PENG Bo. Research progress of crosslinked polymer microspheres for deep control and flooding[J]. Oilfield Chemistry, 2022, 39(1): 179–185.
    [4]
    孙福街. 中国海上油田高效开发与提高采收率技术现状及展望[J]. 中国海上油气,2023,35(5):91–99.

    SUN Fujie. Status and prospects of efficient development and EOR technologies in China offshore oilfields[J]. China Offshore Oil and Gas, 2023, 35(5): 91–99.
    [5]
    曹绪龙,季岩峰,祝仰文,等. 聚合物驱研究进展及技术展望[J]. 油气藏评价与开发,2020,10(6):8–16. doi: 10.3969/j.issn.2095-1426.2020.06.002

    CAO Xulong, JI Yanfeng, ZHU Yangwen, et al. Research advance and technology outlook of polymer flooding[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(6): 8–16. doi: 10.3969/j.issn.2095-1426.2020.06.002
    [6]
    束宁凯,汪卫东,曹嫣镔,等. 化学驱聚合物溶液配注工艺技术及矿场应用效果[J]. 石油学报,2022,43(5):668–679. doi: 10.7623/syxb202205008

    SHU Ningkai, WANG Weidong, CAO Yanbin, et al. Preparation and injection technology of chemical flooding polymer solution and its application effect in fields[J]. Acta Petrolei Sinica, 2022, 43(5): 668–679. doi: 10.7623/syxb202205008
    [7]
    郭光范,叶仲斌,舒政. 近井地带剪切作用对驱油用聚合物溶液渗流特性的影响[J]. 油田化学,2014,31(1):90–94.

    GUO Guangfan, YE Zhongbin, SHU Zheng. Effects of near wellbore shearing on the seepage characteristics of flooding polymer solutions[J]. Oilfield Chemistry, 2014, 31(1): 90–94.
    [8]
    于鹏. 聚合物配制站系统运行适应性分析[J]. 化学工程与装备,2020(4):115–116.

    YU Peng. Analysis of operating adaptability of polymer preparation station system[J]. Chemical Engineering & Equipment, 2020(4): 115–116.
    [9]
    舒政,叶仲斌,张健,等. 聚合物溶液近井地带速率剪切模拟实验装置设计[J]. 油气地质与采收率,2010,17(4):55–58. doi: 10.3969/j.issn.1009-9603.2010.04.015

    SHU Zheng, YE Zhongbin, ZHANG Jian, et al. Experiment design of velocity shearing simulation for polymer adjacent to borehole[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(4): 55–58. doi: 10.3969/j.issn.1009-9603.2010.04.015
    [10]
    舒政,杨雅兰,王同旺,等. 近井地带剪切强度对疏水缔合聚合物相对分子质量的影响[J]. 石油化工应用,2022,41(1):44–50. doi: 10.3969/j.issn.1673-5285.2022.01.010

    SHU Zheng, YANG Yalan, WANG Tongwang, et al. The effect of shear strength near the well on the molecular weight of hydrophobically associating polymers[J]. Petrochemical Industry Application, 2022, 41(1): 44–50. doi: 10.3969/j.issn.1673-5285.2022.01.010
    [11]
    杨开吉,张颖,魏强,等. 海上油田开发用抗温抗盐乳液聚合物研制与性能评价[J]. 石油钻探技术,2024,52(4):118–127. doi: 10.11911/syztjs.2024010

    YANG Kaiji, ZHANG Ying, WEI Qiang, et al. Development and performance evaluation of emulsion polymer with temperature resistance and salt resistance used in offshore oilfield development[J]. Petroleum Drilling Techniques, 2024, 52(4): 118–127. doi: 10.11911/syztjs.2024010
    [12]
    陈文娟,王秀军,胡科,等. 高抗剪切聚丙烯酰胺类聚合物驱油剂的合成及性能[J]. 西安石油大学学报(自然科学版),2018,33(6):105–111. doi: 10.3969/j.issn.1673-064X.2018.06.017

    CHEN Wenjuan, WANG Xiujun, HU Ke, et al. Synthesis and properties of Polyacrylamide polymer flooding agent with high shear resistance[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2018, 33(6): 105–111. doi: 10.3969/j.issn.1673-064X.2018.06.017
    [13]
    于浩然. 绿色靶向微胶囊驱油体系的制备与性能研究[D]. 济南:山东大学,2021.

    YU Haoran. Preparation and performance of green targeted microcapsule oil displacement system[D]. Jinan: Shandong University, 2021.
    [14]
    雷明,罗明良,战永平,等. 化学自生热压裂液技术研究进展[J]. 油田化学,2022,39(1):170–178.

    LEI Ming, LUO Mingliang, ZHAN Yongping, et al. Research progress of fracturing fluid with chemical in-situ heat generation[J]. Oilfield Chemistry, 2022, 39(1): 170–178.
    [15]
    李继勇,邵红云,宋时权,等. 压裂用胶囊破胶剂性能评价方法研究[J]. 石油与天然气化工,2021,50(6):87–90. doi: 10.3969/j.issn.1007-3426.2021.06.015

    LI Jiyong, SHAO Hongyun, SONG Shiquan, et al. Research on performance evaluation method of capsule breaker for fracturing[J]. Chemical Engineering of Oil and Gas, 2021, 50(6): 87–90. doi: 10.3969/j.issn.1007-3426.2021.06.015
    [16]
    杨强斌,李风. 压裂液微胶囊材料的制备及应用[J]. 山东化工,2015,44(5):22–26. doi: 10.3969/j.issn.1008-021X.2015.05.008

    YANG Qiangbin, LI Feng. Preparation and application of polymeric capsule dressing for gel breaker[J]. Shandong Chemical Industry, 2015, 44(5): 22–26. doi: 10.3969/j.issn.1008-021X.2015.05.008
    [17]
    张凡,杨建军,吴庆云,等. 聚氨酯微胶囊的应用研究进展[J]. 粘接,2013,34(12):80–83. doi: 10.3969/j.issn.1001-5922.2013.12.029

    ZHANG Fan, YANG Jianjun, WU Qingyun, et al. Progress of application of polyurethane microcapsules[J]. Adhesion, 2013, 34(12): 80–83. doi: 10.3969/j.issn.1001-5922.2013.12.029
    [18]
    张微微,胡静,包晓丽. 聚氨酯微胶囊应用研究进展[J]. 应用技术学报,2021,21(1):21–29. doi: 10.3969/j.issn.2096-3424.20016

    ZHANG Weiwei, HU Jing, BAO Xiaoli. Research progress in the application of polyurethane microcapsules[J]. Journal of Technology, 2021, 21(1): 21–29. doi: 10.3969/j.issn.2096-3424.20016
    [19]
    张峰,吴斌. 可控降解聚氨酯弹性体的合成和水解性能研究[J]. 聚氨酯工业,2022,37(2):27–30. doi: 10.3969/j.issn.1005-1902.2022.02.007

    ZHANG Feng, WU Bin. Synthesis and hydrolysis properties of controllable degradation polyurethane elastomers[J]. Polyurethane Industry, 2022, 37(2): 27–30. doi: 10.3969/j.issn.1005-1902.2022.02.007
    [20]
    季岩峰,杨勇,曹绪龙,等. 微胶囊乳液型聚合物驱油剂研制与评价[J]. 石油学报,2023,44(6):975–982. doi: 10.7623/syxb202306007

    JI Yanfeng, YANG Yong, CAO Xulong, et al. Development and evaluation of microencapsulated emulsion polymer flooding agent[J]. Acta Petrolei Sinica, 2023, 44(6): 975–982. doi: 10.7623/syxb202306007
  • Cited by

    Periodical cited type(2)

    1. 王鹏. 海洋在役井筒完整性风险量化分级研究. 中国石油和化工标准与质量. 2022(02): 1-3+6 .
    2. 何汉平. 油气井井筒完整性系统风险评估方法. 石油钻探技术. 2017(03): 72-76 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (34) PDF downloads (17) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return