Citation: | CHEN Yang, QI Zhigang, CHEN Zongyi, et al. Design and Application of High-Flow-Rate Shunt Screen for Horizontal Wells[J]. Petroleum Drilling Techniques, 2025, 53(0):1−7. DOI: 10.11911/syztjs.2025035 |
To tackle the challenge of sand bridge-induced blockages during gravel packing in horizontal wells and to boost packing efficiency, a novel high-flow-rate shunt screen has been devised. Grounded in the principles of shunt gravel packing technology, this screen innovatively replaces the traditional packing tube with a nozzle ring within the shunt channel, establishing a "nozzle ring–transport tube" configuration. This structural modification markedly enhances the utilization rate and reliability of the shunt channel's flow cross-section. Relative to conventional shunt screens, the high-flow-rate shunt screen achieves a 47.1% increase in the transport tube's flow cross-section and a 53.8% reduction in the channel's frictional pressure drop. Laboratory modeling tests and field trials have confirmed that the high-flow-rate shunt screen delivers an 180% improvement in packing rate and a 31.2% boost in cumulative oil production over the initial 360 days of well production. These findings highlight the screen's superior slurry transport capabilities, which facilitate rapid circulation and packing, effectively minimize reservoir contamination and gravel–formation sand mixing, and ultimately lead to a substantial increase in single-well productivity.
[1] |
周泓宇,万小进,吴绍伟,等. 水平井控水砾石充填防砂技术研究[J]. 石油钻探技术,2021,49(1):101–106. doi: 10.11911/syztjs.2020138
ZHOU Hongyu, WAN Xiaojin, WU Shaowei, et al. Study on the sand control technique for gravel packing with water control for horizontal wells[J]. Petroleum Drilling Techniques, 2021, 49(1): 101–106. doi: 10.11911/syztjs.2020138
|
[2] |
董星亮. 新型预充填筛管在渤海QHD32-6油田的应用[J]. 石油钻采工艺,2020,42(4):414–416.
DONG Xingliang. Application of a new type of pre-packed screen in the Bohai QHD32-6 Oilfield[J]. Oil Drilling & Production Technology, 2020, 42(4): 414–416.
|
[3] |
OYEINTONBRA I, ADEYEBA A, MOSES U, et al. Design of high-density fluid gravel pack for Assa north lower completions[R]. IPTC 24828, 2025.
|
[4] |
王力智,董长银,何海峰,等. 非均相聚合物驱油藏防砂井近井挡砂介质堵塞机理实验研究[J]. 石油钻探技术,2020,48(5):92–99. doi: 10.11911/syztjs.2020118
WANG Lizhi, DONG Changyin, HE Haifeng, et al. An experimental study on the plugging mechanisms of sand-preventing medium in the near-well zone of sand control wells in heterogeneous polymer-flooding reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(5): 92–99. doi: 10.11911/syztjs.2020118
|
[5] |
段友智,艾爽,刘欢乐,等. 形状记忆筛管自充填防砂完井技术[J]. 石油钻探技术,2019,47(5):86–90.
DUAN Youzhi, AI Shuang, LIU Huanle, et al. Shape memory screen Self-Packing sand control completion technology[J]. Petroleum Drilling Techniques, 2019, 47(5): 86–90.
|
[6] |
PILLAI P, LIN C C, BREGE J, et al. Industry first openhole alternate path gravel pack completion in HPHT environment: Fluid development and case history[R]. SPE 206048, 2021.
|
[7] |
DIKSHIT A, KUMAR A, LANGLAIS M, et al. Extending openhole gravel-packing intervals through enhanced shunted screens[J]. SPE Drilling & Completion, 2021, 36(2): 445–458.
|
[8] |
CHIN P L, MOSES N, B AHMAD MAHDZAN A A, et al. World longest single-trip multizone cased hole gravel packing with alternate path shunt tubes[R]. IPTC 21324, 2021.
|
[9] |
孟文波,刘书杰,黄熠,等. 海上长水平井旁通筛管砾石充填技术及应用[J]. 中国海上油气,2021,33(6):166–173. doi: 10.11935/j.issn.1673-1506.2021.06.019
MENG Wenbo, LIU Shujie, HUANG Yi, et al. Gravel packing technology of bypass screen and its application in offshore long horizontal wells[J]. China Offshore Oil and Gas, 2021, 33(6): 166–173. doi: 10.11935/j.issn.1673-1506.2021.06.019
|
[10] |
李中. 中国海油“深海一号”大气田钻完井关键技术进展及展望[J]. 石油钻探技术,2023,51(4):88–94. doi: 10.11911/syztjs.2023031
LI Zhong. Progress and prospect of key technologies for drilling and completion of “Deep Sea No. 1” gas field of CNOOC[J]. Petroleum Drilling Techniques, 2023, 51(4): 88–94. doi: 10.11911/syztjs.2023031
|
[11] |
JESUS Y, GONCALVES B P, CASTRO V Y, et al. Reducing and optimizing well cost and time by implementing a technical collaborative partnership in Roncador, an ultra deepwater brownfield in Brazil[R]. SPE 223753, 2025.
|
[12] |
WHALEY K, TAHIROV T, KHEDR S, et al. A critical review of shunt tube deployed open hole gravel pack completions pumped with no positive surface pressure[R]. SPE 210121, 2022.
|
[13] |
OMER F, RUDIC A, SONG Lijun, et al. Multiphase fluid erosion modeling for rapid development of shunt tube isolation valve for openhole gravel pack[R]. SPE 214568, 2023.
|
[14] |
MALBREL C A, CREWS J B. Use of ultra lightweight particulates in multi-path gravel packing operations: US 20180258743 A1[P]. 2018-09-13.
|
[15] |
YEH C S, BARRY M D, HECKER M T, et al. Crossover joint for connecting eccentric flow paths to concentric flow paths: US 9797226 B2[P]. 2017-10-24.
|
[16] |
AGGARWAL V, GUPTA V, NARAYAN S, et al. Extended-reach open-hole gravel pack completion under multiple complexities[R]. SPE 185902, 2017.
|
[17] |
SLADIC J, BRASSEAUX J, MCNAMEE S, et al. High pressure 2×2 screen development for extended-reach, open-hole shunted gravel-pack wells[R]. IPTC 22995, 2023.
|
[18] |
司连收,李自安,张健. 砾石充填防砂对稠油井产能影响研究[J]. 西南石油大学学报(自然科学版),2013,35(5):135–140.
SI Lianshou, LI Zian, ZHANG Jian. Influence of gravel packing sand control on the productivity of heavy oil well[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2013, 35(5): 135–140.
|
[19] |
WIJAYA R, MURYANTO B, RUSHATMANTO M, et al. Decrypting causes of sand control failure and improving productivity of multi zone single trip gravel pack[P]. IPTC 18416, 2015.
|
[20] |
KHAN J A, CHEN Yanhong. Mechanism and oil-water pressure drop of unique autonomous inflow control device under different water cut: Water control performance of AICD in large bottom water reservoir in South Sudan[R]. IPTC 24839, 2025.
|
[21] |
TRUJILLO H, TENGONO J A, Rubiano J, et al. How to constantly deliver 100% packing efficiency in openhole gravel packs: A field study in Colombia[R]. SPE 146447, 2011.
|
1. |
马金龙. 浅层枯竭型气藏储气库钻井关键技术. 石油工业技术监督. 2024(02): 32-36 .
![]() | |
2. |
张思远,杨佳坤,宋丽娜,周栋梁,胡俊,许锋,施玉霞,胥洪成,裴根,范家屹. 储气库多周期运行井控参数预测模型. 油气藏评价与开发. 2024(05): 788-794 .
![]() | |
3. |
高小芃,赵虎,司西强. 近油基钻井液在文23储气库水平井的应用. 石油化工应用. 2024(10): 18-22 .
![]() | |
4. |
何斌斌,柳华杰,郑若臣,步玉环,殷慧,霍美桦,张军义,马小龙. 盐岩地层矿物离子对水泥浆性能的影响规律. 中国石油大学学报(自然科学版). 2024(06): 85-94 .
![]() | |
5. |
张强. 文23储气库储层段钻井液及储层保护技术. 断块油气田. 2023(03): 517-522 .
![]() | |
6. |
廖权文,胡建均,史怀忠,宋恒宇. 文23储气库钻井工程关键技术. 石油钻采工艺. 2023(02): 160-166 .
![]() | |
7. |
陈芳,马平平,杨立军,刘文超. 温西超低压储气库钻完井工程技术优化. 石油钻采工艺. 2023(02): 167-172 .
![]() | |
8. |
张赫. 永久式封隔器在储气库老井应用中的实践及认识. 石油和化工设备. 2023(08): 19-21 .
![]() | |
9. |
谢关宝,滕春鸣,柳华杰. 盐岩蠕变对水泥环气密封完整性影响规律研究. 石油钻探技术. 2022(02): 78-84 .
![]() | |
10. |
刘自广. 文23枯竭砂岩型储气库微泡钻井液技术. 钻探工程. 2022(02): 117-122 .
![]() | |
11. |
黄家根,段忠国,田霄,赵俊杰. 苏东39-61储气库钻井技术难点及对策. 石化技术. 2022(06): 54-56 .
![]() | |
12. |
路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 .
![]() | |
13. |
曾大乾,张广权,张俊法,糜利栋,杨小松,贾跃玮,王丹丹,范照伟. 中石化地下储气库建设成就与发展展望. 天然气工业. 2021(09): 125-134 .
![]() | |
14. |
何祖清,何同,伊伟锴,孙鹏,艾爽. 中国石化枯竭气藏型储气库注采技术及发展建议. 地质与勘探. 2020(03): 605-613 .
![]() | |
15. |
袁光杰,张弘,金根泰,夏焱. 我国地下储气库钻井完井技术现状与发展建议. 石油钻探技术. 2020(03): 1-7 .
![]() | |
16. |
齐桂雪. 枯竭气藏型储气库储层应力敏感性实验研究. 石油地质与工程. 2020(03): 76-80 .
![]() | |
17. |
曾大乾,张俊法,张广权,糜利栋. 中石化地下储气库建库关键技术研究进展. 天然气工业. 2020(06): 115-123 .
![]() | |
18. |
秦文政,张彦华,高飞,孙超,党文辉. 呼图壁储气库水平井关键技术. 中国石油和化工标准与质量. 2020(15): 238-239+241 .
![]() | |
19. |
刘宏伟. 文23储气库老井安全封堵工艺设计及应用. 石油石化绿色低碳. 2020(05): 56-62 .
![]() | |
20. |
何祖清,伊伟锴,李军,孙鹏,蒋记伟,刘鹏林. 文23储气库注采管柱封隔器密封数值模拟研究. 石油管材与仪器. 2020(06): 47-51 .
![]() |