JING Yuxiang, GUO Yintong, FENG Daiying, et al. Hydration damage and shear characteristics of regular toothed structural planes of shale [J]. Petroleum Drilling Techniques, 2025, 53(2):76−87. DOI: 10.11911/syztjs.2025033
Citation: JING Yuxiang, GUO Yintong, FENG Daiying, et al. Hydration damage and shear characteristics of regular toothed structural planes of shale [J]. Petroleum Drilling Techniques, 2025, 53(2):76−87. DOI: 10.11911/syztjs.2025033

Hydration Damage and Shear Characteristics of Regular Toothed Structural Planes of Shale

More Information
  • Received Date: December 09, 2023
  • Revised Date: March 02, 2025
  • Available Online: March 24, 2025
  • Formation slip makes casing failure occur frequently after the fracturing of shale reservoirs, which seriously affects construction and production. In order to understand the damage caused by the hydration of shale reservoirs’ structural planes and shear characteristics before and after hydration, shale samples of Longmaxi Formation in southern Sichuan were adopted. Two kinds of regular toothed structural planes of 10° and 40° were prefabricated, and the fault characteristics at different roughness were simulated. Moreover, direct shear tests for hydration were carried out under four normal stresses.The results show that: 1) The structural plane with a high undulating angle of 40° shows plastic deformation characteristics after hydration. The shear displacement–shear stress curve shows the characteristics of stepped rise, and shear stiffness decreases by about 16.3%. However, the structural plane with a low undulating angle of 10° mainly exhibits frictional slip, and the shear stiffness fluctuates slightly. High normal stress (≥ 5 MPa) will aggravate the damage effect of hydration on the structural plane, but the damage promotion effect tends to the upper limit after a long time of hydration (≥ 24 h). 2) At the initial stage of hydration (1–2 h), the shear strength of the structural plane with a high undulating angle of 40° decreases by 13.05% on average, and the overall shear strength decreases by 18.19%; the cohesion and internal friction angle decrease by 16.31% and 16.57%, respectively. In contrast, the shear strength parameters of the structural plane with a low undulating angle of 10° are less affected by hydration, and the fluctuation range is less than 5%. 3) After 360 h of hydration, microporous connectivity and mineral stratification appear on the structural plane with a low undulating angle of 10°, while the structural plane with a high undulating angle of 40° forms large-size tensile fractures, and surface roughness increases. This difference is due to the more concentrated distribution of clay minerals and the more significant hydration softening effect on the structural plane with a high undulating angle, resulting in reduced brittleness and enhanced plasticity. The research results can provide a theoretical basis for shale reservoir fracturing design and casing protection.

  • [1]
    高东伟,代林,刘湘,等. 鄂西地区二叠系页岩气钻完井难点及对策[J]. 世界石油工业,2024,31(4):81–93. doi: 10.20114/j.issn.1006-0030.20240201001

    GAO Dongwei, DAI Lin, LIU Xiang, et al. Difficulties and countermeasures of drilling and completion of Permian shale gas in western Hubei[[J]. World Petroleum Industry, 2024, 31(4): 81–93. doi: 10.20114/j.issn.1006-0030.20240201001
    [2]
    袁建强. 中国石化页岩气超长水平段水平井钻井技术新进展与发展建议[J]. 石油钻探技术,2023,51(4):81–87. doi: 10.11911/syztjs.2023030

    YUAN Jianqiang. New progress and development proposals of Sinopec’s drilling technologies for ultra-long horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2023, 51(4): 81–87. doi: 10.11911/syztjs.2023030
    [3]
    张东清,万云强,张文平,等. 涪陵页岩气田立体开发优快钻井技术[J]. 石油钻探技术,2023,51(2):16–21. doi: 10.11911/syztjs.2022097

    ZHANG Dongqing, WAN Yunqiang, ZHANG Wenping, et al. Optimal and fast drilling technologies for stereoscopic development of the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 16–21. doi: 10.11911/syztjs.2022097
    [4]
    刘建亮,王亚莉,陆家亮,等. 中国页岩气开发效益现状及发展策略探讨[J]. 断块油气田,2020,27(6):684–688.

    LIU Jianliang, WANG Yali, LU Jialiang, et al. Discussion on internal rate of return status and development strategy of China shale gas[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 684–688.
    [5]
    李德旗,刘春亭,朱炬辉,等. 高闭合压力下深层页岩气促缝网强支撑压裂工艺[J]. 石油钻采工艺,2024,46(3):336–345. doi: 10.13639/j.odpt.202312014

    LI Deqi, LIU Chunting, ZHU Juhui, et al. Fracturing technology with enhanced fracture network and reinforced support for deep shalegas under high closure pressure[J]. Oil Drilling & Production Technology, 2024, 46(3): 336–345. doi: 10.13639/j.odpt.202312014
    [6]
    WANG H, LIAO X, DING H. Monitoring and evaluating the volume fracturing effect of horizontal well[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 498–502. doi: 10.1016/j.jngse.2015.01.005
    [7]
    王强,赵金洲,胡永全,等. 页岩油储集层压后焖井时间优化方法[J]. 石油勘探与开发,2022,49(3):586–596. doi: 10.11698/PED.20210906

    WANG Qiang, ZHAO Jinzhou, HU Yongquan, et al. Shut-in time optimization after fracturing in shale oil reservoirs[J]. Petroleum Exploration and Development, 2022, 49(3): 586–596. doi: 10.11698/PED.20210906
    [8]
    ENGELDER T, CATHLES L M, BRYNDZIA L T. The fate of residual treatment water in gas shale[J]. Journal of Unconventional Oil and Gas Resources, 2014, 7: 33–48. doi: 10.1016/j.juogr.2014.03.002
    [9]
    蒋廷学,卞晓冰,王海涛,等. 页岩气水平井分段压裂排采规律研究[J]. 石油钻探技术,2013,41(5):21–25. doi: 10.3969/j.issn.1001-0890.2013.05.004

    JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Flow back mechanism study of multi-stage fracturing of shale gas horizontal wells[J]. Petroleum Drilling Techniques, 2013, 41(5): 21–25. doi: 10.3969/j.issn.1001-0890.2013.05.004
    [10]
    雷群,翁定为,熊生春,等. 中国石油页岩油储集层改造技术进展及发展方向[J]. 石油勘探与开发,2021,48(5):1035–1042. doi: 10.11698/PED.2021.05.15

    LEI Qun, WENG Dingwei, XIONG Shengchun, et al. Progress and development directions of shale oil reservoir stimulation technology of China National Petroleum Corporation[J]. Petroleum Exploration and Development, 2021, 48(5): 1035–1042. doi: 10.11698/PED.2021.05.15
    [11]
    王飞,阮颖琪,陈巧韵,等. 考虑压裂液渗吸换油效应的压裂焖井压降模型[J]. 石油勘探与开发,2021,48(6):1250–1257. doi: 10.11698/PED.2021.06.17

    WANG Fei, RUAN Yingqi, CHEN Qiaoyun, et al. A pressure drop model of post-fracturing shut-in considering the effect of fracturing-fluid imbibition and oil replacement[J]. Petroleum Exploration and Development, 2021, 48(6): 1250–1257. doi: 10.11698/PED.2021.06.17
    [12]
    游利军,谢本彬,杨建,等. 页岩气井压裂液返排对储层裂缝的损害机理[J]. 天然气工业,2018,38(12):61–69. doi: 10.3787/j.issn.1000-0976.2018.12.007

    YOU Lijun, XIE Benbin, YANG Jian, et al. Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(12): 61–69. doi: 10.3787/j.issn.1000-0976.2018.12.007
    [13]
    谭鹏,陈朝伟,赵庆,等. 页岩气多簇压裂断层活化机理与控制方法[J]. 石油钻探技术,2024,52(6):107–116. doi: 10.11911/syztjs.2024120

    TAN Peng, CHEN Zhaowei, ZHAO Qing, et al. Mechanism and control method of fault activation by multi-cluster fracturing of shale gas [J]. Petroleum Drilling Techniques, 2024, 52(6): 107–116. doi: 10.11911/syztjs.2024120
    [14]
    陈朝伟,房超,朱勇,等. 四川页岩气井套管变形特征及受力模式[J]. 石油机械,2020,48(2):126–134.

    CHEN Zhaowei, FANG Chao, ZHU Yong, et al. Deformation characteristics and stress modes of casings for shale gas wells in Sichuan[J]. China Petroleum Machinery, 2020, 48(2): 126–134.
    [15]
    LI Yang, LIU Wei, YAN Wei, et al. Mechanism of casing failure during hydraulic fracturing: Lessons learned from a tight-oil reservoir in China[J]. Engineering Failure Analysis, 2019, 98: 58–71. doi: 10.1016/j.engfailanal.2019.01.074
    [16]
    YIN Fei, HAN Lihong, YANG Shangyu, et al. Casing deformation from fracture slip in hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2018, 166: 235–241. doi: 10.1016/j.petrol.2018.03.010
    [17]
    童亨茂,张平,张宏祥,等. 页岩气水平井开发套管变形的地质力学机理及其防治对策[J]. 天然气工业,2021,41(1):189–197.

    TONG Hengmao, ZHANG Ping, ZHANG Hongxiang, et al. Geomechanical mechanisms and prevention countermeasures of casing deformation in shale gas horizontal wells[J]. Natural Gas Industry, 2021, 41(1): 189–197.
    [18]
    钱斌,朱炬辉,杨海,等. 页岩储集层岩心水化作用实验[J]. 石油勘探与开发,2017,44(4):615–621. doi: 10.11698/PED.2017.04.15

    QIAN Bin, ZHU Juhui, YANG Hai, et al. Experiments on shale reservoirs plugs hydration[J]. Petroleum Exploration and Development, 2017, 44(4): 615–621. doi: 10.11698/PED.2017.04.15
    [19]
    王萍,屈展. 基于核磁共振的脆硬性泥页岩水化损伤演化研究[J]. 岩土力学,2015,36(3):687–693.

    WANG Ping, QU Zhan. NMR technology based hydration damage evolution of hard brittle shale[J]. Rock and Soil Mechanics, 2015, 36(3): 687–693.
    [20]
    王跃鹏,刘向君,熊健,等. 富有机质页岩水化特征的试验研究[J]. 地下空间与工程学报,2022,18(3):891–900.

    WANG Yuepeng, LIU Xiangjun, XIONG Jian, et al. Experimental study on hydration characteristics of organic-rich shale[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(3): 891–900.
    [21]
    赵志红,金浩增,郭建春,等. 水化作用下深层页岩软化本构模型研究[J]. 岩石力学与工程学报,2022,41(增刊2):3189–3197.

    ZHAO Zhihong, JIN Haozeng, GUO Jianchun, et al. Study on softening constitutive model of deep shale under hydration[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(supplement 2): 3189–3197.
    [22]
    薛华庆,周尚文,蒋雅丽,等. 水化作用对页岩微观结构与物性的影响[J]. 石油勘探与开发,2018,45(6):1075–1081. doi: 10.11698/PED.2018.06.16

    XUE Huaqing, ZHOU Shangwen, JIANG Yali, et al. Effects of hydration on the microstructure and physical properties of shale[J]. Petroleum Exploration and Development, 2018, 45(6): 1075–1081. doi: 10.11698/PED.2018.06.16
    [23]
    LIU Jingping, YANG Zhi, SUN Jinsheng, et al. Experimental investigation on hydration mechanism of Sichuan shale (China)[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108421. doi: 10.1016/j.petrol.2021.108421
    [24]
    MA Tianshou, YANG Chunhe, CHEN Ping, et al. On the damage constitutive model for hydrated shale using CT scanning technology[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 204–214. doi: 10.1016/j.jngse.2015.11.025
    [25]
    马天寿,陈平. 基于CT扫描技术研究页岩水化细观损伤特性[J]. 石油勘探与开发,2014,41(2):227–233.

    MA Tianshou, CHEN Ping. Study of meso-damage characteristics of shale hydration based on CT scanning technology[J]. Petroleum Exploration and Development, 2014, 41(2): 227–233.
    [26]
    刘向君,熊健,梁利喜. 龙马溪组硬脆性页岩水化实验研究[J]. 西南石油大学学报(自然科学版),2016,38(3):178–186.

    LIU Xiangjun, XIONG Jian, LIANG Lixi. Hydration experiment of hard brittle shale of the Longmaxi Formation[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(3): 178–186.
    [27]
    LIU Xiangjun, ZENG Wei, LIANG Lixi, et al. Experimental study on hydration damage mechanism of shale from the Longmaxi Formation in southern Sichuan Basin, China[J]. Petroleum, 2016, 2(1): 54–60. doi: 10.1016/j.petlm.2016.01.002
    [28]
    石秉忠,夏柏如. 硬脆性泥页岩水化过程的微观结构变化[J]. 大庆石油学院学报,2011,35(6):28–34.

    SHI Bingzhong, XIA Boru. The variation of microstructures in the hard brittle shale hydration process[J]. Journal of Daqing Petroleum Institute, 2011, 35(6): 28–34.
    [29]
    石秉忠,夏柏如,林永学,等. 硬脆性泥页岩水化裂缝发展的CT成像与机理[J]. 石油学报,2012,33(1):137–142. doi: 10.7623/syxb201201020

    SHI Bingzhong, XIA Bairu, LIN Yongxue, et al. CT imaging and mechanism analysis of crack development by hydration in hard-brittle shale formations[J]. Acta Petrolei Sinica, 2012, 33(1): 137–142. doi: 10.7623/syxb201201020
    [30]
    丁乙,雷炜,刘向君,等. 页岩气储层自吸−水化损伤−离子扩散相关性试验研究[J]. 石油钻探技术,2023,51(5):88–95. doi: 10.11911/syztjs.2023088

    DING Yi, LEI Wei, LIU Xiangjun, et al. Experimental research on the correlation of spontaneous imbibition-hydration damage-ion diffusion in shale gas reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(5): 88–95. doi: 10.11911/syztjs.2023088
    [31]
    杨柳,冷润熙,常天全,等. 页岩气储层渗吸与盐离子扩散相关关系[J]. 中国海上油气,2020,32(2):112–119.

    YANG Liu, LENG Runxi, CHANG Tianquan, et al. Correlation between the imbibition and salt ion diffusion of shale gas reservoirs[J]. China Offshore Oil and Gas, 2020, 32(2): 112–119.
    [32]
    熊健,李羽康,刘向君,等. 水岩作用对页岩岩石物理性质的影响:以四川盆地下志留统龙马溪组页岩为例[J]. 天然气工业,2022,42(8):190–201. doi: 10.3787/j.issn.1000-0976.2022.08.015

    XIONG Jian, LI Yukang, LIU Xiangjun, et al. Influences of water–rock interaction on the physical and mechanical properties of shales: a case study of the Lower Silurian Longmaxi Formation in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8): 190–201. doi: 10.3787/j.issn.1000-0976.2022.08.015
    [33]
    WANG Yuepeng, LIU Xiangjun, LIANG Lixi, et al. Experimental study on the damage of organic-rich shale during water-shale interaction[J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103103. doi: 10.1016/j.jngse.2019.103103
    [34]
    ZHOU Tong, ZHANG Shicheng, YANG Liu, et al. Experimental investigation on fracture surface strength softening induced by fracturing fluid imbibition and its impacts on flow conductivity in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 36(Part A): 893−905.
    [35]
    衡帅,刘晓,李贤忠,等. 张拉作用下页岩裂缝扩展演化机制研究[J]. 岩石力学与工程学报,2019,38(10):2031–2044.

    HENG Shuai, LIU Xiao, LI Xianzhong, et al. Study on the fracture propagation mechanisms of shale under tension[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2031–2044.
    [36]
    李芷,贾长贵,杨春和,等. 页岩水力压裂水力裂缝与层理面扩展规律研究[J]. 岩石力学与工程学报,2015,34(1):12–20.

    LI Zhi, JIA Changgui, YANG Chunhe, et al. Propagation of hydraulic fissures and bedding planes in hydraulic fracturing of shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 12–20.
    [37]
    XIE Heping, PARISEAU W G. Fractal estimation of joint roughness coefficients[J]. Science in China(Series B), 1994, 37(12): 1516–1524.
  • Related Articles

    [1]ZHOU Zhou, LI Ben, GENG Yudi, XIAO Rui. Prediction Model of Rock Mechanics Parameters in Ultra-DeepFractured Formations Based on Big Data[J]. Petroleum Drilling Techniques, 2024, 52(5): 91-96. DOI: 10.11911/syztjs.2024084
    [2]LIU Jie, SHEN Delai, YAN Ruifeng, DENG Wei, QU Wentao. Study on the Corrosion Resistance of Surface-Modified Soluble Magnesium Alloy for Slip Base[J]. Petroleum Drilling Techniques, 2024, 52(3): 118-126. DOI: 10.11911/syztjs.2024011
    [3]SHI Bingzhong, ZHANG Dong, CHU Qi. Micro Digital Analysis on Instability Form and Mechanism of Mudstone Borehole Wall in Songnan Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(1): 22-33. DOI: 10.11911/syztjs.2023005
    [4]WANG Wei, YAN Ruifeng, WEI Keying, WU Hongqin, QU Wentao. Study on Mechanical and Corrosion Properties of Fe-Mn Alloy for Soluble Ball Seats[J]. Petroleum Drilling Techniques, 2022, 50(6): 133-138. DOI: 10.11911/syztjs.2022103
    [5]LI Erdang, HAN Zuowei, GAO Xiangrui, MA Mingyu, QIU Junchao. Research on the Microscopic Pore Producing Characteristics of Tight Reservoirs Displaced by Different Gas Injection Media[J]. Petroleum Drilling Techniques, 2020, 48(5): 85-91. DOI: 10.11911/syztjs.2020078
    [6]Gui Junchuan, Xia Hongquan, Zou Yong, Gong Haohao. A New Method to Calculate the Gas Saturation of the Sand and Shale Formations Based on Logging Rock Mechanics Parameters[J]. Petroleum Drilling Techniques, 2015, 43(1): 82-87. DOI: 10.11911/syztjs.201501014
    [7]Yang Henglin, Shen Ruichen, Fu Li. Composition and Mechanical Properties of Gas Shale[J]. Petroleum Drilling Techniques, 2013, 41(5): 31-35. DOI: 10.3969/j.issn.1001-0890.2013.05.006
    [8]Xu Hui, Sun Xiuzhi, Han Yugui, He Dongyue, Dong Wen. Performance Evaluation and Microstructure Study of Ultra High Molecular Weight Polymer[J]. Petroleum Drilling Techniques, 2013, 41(3): 114-118. DOI: 10.3969/j.issn.1001-0890.2013.03.022
    [9]Li Qinghui, Chen Mian, Jin Yan, Hou Bing, Zhang Jiazhen. Rock Mechanical Properties and Brittleness Evaluation of Shale Gas Reservoir[J]. Petroleum Drilling Techniques, 2012, 40(4): 17-22. DOI: 10.3969/j.issn.1001-0890.2012.04.004
    [10]Chen Mian, Jin Yan. Shale Gas Fracturing Technology Parameters Optimization Based on Core Analysis[J]. Petroleum Drilling Techniques, 2012, 40(4): 7-12. DOI: 10.3969/j.issn.1001-0890.2012.04.002
  • Cited by

    Periodical cited type(12)

    1. 陈雨飞,安锦涛,张辉,李军,周英操,路宗羽. 考虑钻杆接头的小井眼环空压耗计算模型. 钻井液与完井液. 2024(03): 296-304 .
    2. 赵前进,王恩合,陈芳,田晓伟,王品德. 吉康油田萨探1区块优快钻完井关键技术. 石油地质与工程. 2024(06): 107-111 .
    3. 谢鑫,窦正道,杨小敏,金晶,王媛媛,任飞. 小井眼提速技术在页岩油开发中的应用. 油气藏评价与开发. 2023(01): 83-90 .
    4. 代锋,孙钰淇,付利,雷正义,刘力,衡德,陈正桥. 长宁页岩气小井眼水平井钻井技术分析及发展探讨. 天然气勘探与开发. 2023(02): 118-126 .
    5. 王宇红,孙天玉,李鹏. 沁水盆地深部煤层气水平井定向钻进地质导向技术. 煤矿安全. 2023(06): 41-46 .
    6. 王媛媛,谢鑫,窦正道,赵进,付成林,徐浩,张骥. 小井眼高性能水基钻井液的研制和应用. 精细石油化工进展. 2023(04): 15-20 .
    7. 甘新星,董仲林,马吉龙,杜晓雨. 南川页岩气田超长水平段水平井高效下套管技术. 断块油气田. 2023(05): 874-878 .
    8. 汪海阁,周波. 致密砂岩气钻完井技术进展及展望. 天然气工业. 2022(01): 159-169 .
    9. 范家伟,袁野,李绍华,王彦秋,黄兰,尚钲凯,李君,陶正武. 塔里木盆地深层致密油藏地质工程一体化模拟技术. 断块油气田. 2022(02): 194-198 .
    10. 王萍,樊佳勇,韩成福,王亮,屈展,黄海,顾甜利. 苏里格气田区小井眼二开水平井优化设计. 科学技术与工程. 2022(28): 12349-12354 .
    11. 张勤,倪华峰,王清臣. 长庆致密气田超长水平段钻井降摩减阻技术. 石油钻采工艺. 2022(06): 671-677 .
    12. 郑德帅. 可旋转钻柱定向钻进工具设计及测试. 石油钻探技术. 2021(06): 81-85 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (45) PDF downloads (22) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return