YAN Mingfei, JIN Yan, WEI Shiming, et al. Study on evolution law of fracture toughness of ultra-deep laminated shale [J]. Petroleum Drilling Techniques, 2025, 53(2):159−167. DOI: 10.11911/syztjs.2025032
Citation: YAN Mingfei, JIN Yan, WEI Shiming, et al. Study on evolution law of fracture toughness of ultra-deep laminated shale [J]. Petroleum Drilling Techniques, 2025, 53(2):159−167. DOI: 10.11911/syztjs.2025032

Study on Evolution Law of Fracture Toughness of Ultra-Deep Laminated Shale

More Information
  • Received Date: December 20, 2023
  • Revised Date: March 01, 2025
  • Available Online: March 25, 2025
  • To explore the longitudinal hydraulic fracture propagation mechanism in ultra-deep shale reservoirs, the influence of high stress and bedding properties on shale fracture characteristics was systematically analyzed. Initially, shale mechanical parameters were obtained through triaxial compression experiments. Subsequently, a three-point bending numerical model of a semi-circular shale plate with confining pressure was constructed using the particle discrete element method to simulate the shale fracture process under various conditions. The numerical simulation results demonstrate that increasing the confining pressure significantly enhances shale fracture toughness, and the influence of bedding plane angle and density on fracture toughness is amplified with increasing confining pressure. At the same confining pressure, fracture toughness decreases with an increase in bedding plane angle and exhibits a minor variation with an increase in bedding plane density, indicating that bedding plane density has a greater strengthening effect on fracture toughness than bedding plane angle. Based on these findings, the quantitative relationship of fracture toughness with confining pressure, bedding plane angle, and density was fitted, and a quantitative chart illustrating the impact of varying confining pressures and bedding plane properties on shale fracture toughness was developed. The results reveal the complex influence of bedding properties on fracture characteristics under high stress conditions in ultra-deep shale reservoirs, providing a theoretical basis for optimizing hydraulic fracturing schemes and effectively controlling hydraulic fracture propagation behavior.

  • [1]
    MAHANTA B, TRIPATHY A, VISHAL V, et al. Effects of strain rate on fracture toughness and energy release rate of gas shales[J]. Engineering Geology, 2017, 218: 39–49. doi: 10.1016/j.enggeo.2016.12.008
    [2]
    ATKINSON C, SMELSER R E, SANCHEZ J. Combined mode fracture via the cracked Brazilian disk test[J]. International Journal of Fracture, 1982, 18(4): 279–291.
    [3]
    吕有厂. 层理性页岩断裂韧性的加载速率效应试验研究[J]. 岩石力学与工程学报,2018,37(6):1359–1370.

    LYU Youchang. Effect of bedding plane direction on fracture toughness of shale under different loading rates[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1359–1370.
    [4]
    陈勉,金衍,袁长友. 围压条件下岩石断裂韧性的实验研究[J]. 力学与实践,2001,23(4):32–35. doi: 10.3969/j.issn.1000-0879.2001.04.010

    CHEN Mian, JIN Yan, YUAN Changyou. Study on the experiment for fracture toughness under confining pressure[J]. Mechanics in Engineering, 2001, 23(4): 32–35. doi: 10.3969/j.issn.1000-0879.2001.04.010
    [5]
    董京楠,金衍,陈勉,等. 页岩Ⅰ型断裂韧性测试及跨尺度裂缝表征研究[J]. 地下空间与工程学报,2019,15(增刊1):205–210.

    DONG Jingnan, JIN Yan, CHEN Mian, et al. Study on shale fracture toughness and micro-characterization of mode Ⅰ crack using DCB specimen and SEM method[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(supplement 1): 205–210.
    [6]
    余海棠,丁乙,刘艳梅,等. 考虑水化损伤作用的页岩动态自吸模型[J]. 石油钻探技术,2023,51(5):139–148. doi: 10.11911/syztjs.2023054

    YU Haitang, DING Yi, LIU Yanmei, et al. A dynamical spontaneous imbibition model for shale considering hydration damage[J]. Petroleum Drilling Techniques, 2023, 51(5): 139–148. doi: 10.11911/syztjs.2023054
    [7]
    金衍,薄克浩,张亚洲,等. 深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考[J]. 石油钻探技术,2023,51(4):159–169. doi: 10.11911/syztjs.2023024

    JIN Yan, BO Kehao, ZHANG Yazhou, et al. Advancements and considerations of chemo-mechanical coupling for wellbore stability in deep hard brittle shale[J]. Petroleum Drilling Techniques, 2023, 51(4): 159–169. doi: 10.11911/syztjs.2023024
    [8]
    谭鹏,陈朝伟,赵庆,等. 页岩气多簇压裂断层活化机理与控制方法[J]. 石油钻探技术,2024,52(6):107–116. doi: 10.11911/syztjs.2024120

    TAN Peng, CHEN Zhaowei, ZHAO Qing, et al. Mechanism and control method of fault activation by multi-cluster fracturing of shale gas[J]. Petroleum Drilling Techniques, 2024, 52(6): 107–116. doi: 10.11911/syztjs.2024120
    [9]
    刘彧轩,杨兴贵,郭建春. 纵向无限级多薄层储层裂缝穿层扩展规律[J]. 断块油气田,2024,31(6):1076–1082.

    LIU Yuxuan, YANG Xinggui, GUO Jianchun. Fracture through-layer propagation law in longitudinal infinite multiple thin layer reservoirs[J]. Fault-Block Oil & Gas Field, 2024, 31(6): 1076–1082.
    [10]
    田建超,张艺,李凝,等. 页岩油水力压裂裂缝特征场地级数值模拟优化方法[J]. 石油钻采工艺,2024,46(3):326–335.

    TIAN Jianchao, ZHANG Yi, LI Ning, et al. Numerical simulation optimization method for site-level hydraulic fracturing fracture characteristics in shale oil[J]. Oil Drilling & Production Technology, 2024, 46(3): 326–335.
    [11]
    赵彦昕,许文俊,王雷,等. 陆相页岩储层水力裂缝穿层扩展规律[J]. 石油钻采工艺,2023,45(1):76–84.

    ZHAO Yanxin, XU Wenjun, WANG Lei, et al. Through-layer propagation laws of hydraulic fractures in continental shale reservoirs[J]. Oil Drilling & Production Technology, 2023, 45(1): 76–84.
    [12]
    熊健,吴俊,刘向君,等. 陆相页岩储层地质力学特性及对压裂效果的影响[J]. 西南石油大学学报(自然科学版),2023,45(5):69–80.

    XIONG Jian, WU Jun, LIU Xiangjun, et al. The geomechanical characteristics of the continental shale reservoirs and their influence on the fracturing effect[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(5): 69–80.
    [13]
    张景轩,范晓,陈波,等. 硬脆性页岩断裂韧性二维数值模拟研究[J]. 复杂油气藏,2019,12(1):73–80.

    ZHANG Jingxuan, FAN Xiao, CHEN Bo, et al. Two-dimensional numerical simulation of fracture toughness of hard brittle shale[J]. Complex Hydrocarbon Reservoirs, 2019, 12(1): 73–80.
    [14]
    XU Yuan, DAI Feng, ZHAO Tao, et al. Fracture toughness determination of cracked chevron notched Brazilian disc rock specimen via Griffith energy criterion incorporating realistic fracture profiles[J]. Rock Mechanics and Rock Engineering, 2016, 49(8): 3083–3093. doi: 10.1007/s00603-016-0978-0
    [15]
    YIN Tubing, ZHANG Shuaishua, LI Xibing, et al. A numerical estimate method of dynamic fracture initiation toughness of rock under high temperature[J]. Engineering Fracture Mechanics, 2018, 204: 87–102. doi: 10.1016/j.engfracmech.2018.09.034
    [16]
    KURUPPU M D, OBARA Y, AYATOLLAHI M R, et al. ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen[J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 267–274. doi: 10.1007/s00603-013-0422-7
    [17]
    张昊天,周文,曹茜,等. 基于应力—应变模型的脆塑性测井评价[J]. 测井技术,2018,42(3):331–337.

    ZHANG Haotian, ZHOU Wen, CAO Qian, et al. Log evaluation method of the brittle-plastic parameters based on stress-strain model[J]. Well Logging Technology, 2018, 42(3): 331–337.
    [18]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47–65.
    [19]
    李庆辉,陈勉,金衍,等. 页岩气储层岩石力学特性及脆性评价[J]. 石油钻探技术,2012,40(4):17–22. doi: 10.3969/j.issn.1001-0890.2012.04.004

    LI Qinghui, CHEN Mian, JIN Yan, et al. Rock mechanical properties and brittleness evaluation of shale gas reservoir[J]. Petroleum Drilling Techniques, 2012, 40(4): 17–22. doi: 10.3969/j.issn.1001-0890.2012.04.004
  • Related Articles

    [1]GUO Xiao, PANG Wei, ZHANG Xudong, WANG Haodong. Design and Performance Simulation of Acoustic Metamaterial Particle for Downhole Imaging[J]. Petroleum Drilling Techniques, 2025, 53(1): 130-135. DOI: 10.11911/syztjs.2024123
    [2]DAI Ling, JIANG Renkai, SUN Changwei, PEI Bolin, ZHAO Wei. Water Control through Particle Huff and Puff for Horizontal Wells with Severe Fluid Loss in Fractured-Vuggy Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(3): 91-97. DOI: 10.11911/syztjs.2024013
    [3]ZHAO Xiangyang. Experimental Study on Influence of Solid Particles on Stress Sensitivity of Fractures in Tight Oil and Gas Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(3): 68-74. DOI: 10.11911/syztjs.2024050
    [4]GE Xiang, WEN Danni, YE Tairan, ZHANG Weifeng, ZHANG Shimao. Logging Evaluation Method of Flow Units in a Dolomite Reservoir in the 4th Member of the Leikoupo Formation in Western Sichuan Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(6): 120-127. DOI: 10.11911/syztjs.2023049
    [5]DENG Yuan, HE Shiming, DENG Xianghua, PENG Yuanchun, HE Shiyun, TANG Ming. Study on Wellbore Instability of Bedded Shale Gas Horizontal Wells under Chemo-Mechanical Coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26-33. DOI: 10.11911/syztjs.2020010
    [6]Tang Jiatong. A New Calculation Method of Minimum Gas Volume Flow Rate for Gas Drilling[J]. Petroleum Drilling Techniques, 2015, 43(4): 73-77. DOI: 10.11911/syztjs.201504013
    [7]Zeng Qingdong, Yao Jun. Experiment of Shale Failure Mechanism Based on Particle Flow Theory[J]. Petroleum Drilling Techniques, 2015, 43(1): 33-37. DOI: 10.11911/syztjs.201501006
    [8]Liao Dongliang, Xiao Lizhi, Zhang Yuanchun. Evaluation Model for Shale Brittleness Index Based on Mineral Content and Fracture Toughness[J]. Petroleum Drilling Techniques, 2014, 42(4): 37-41. DOI: 10.3969/j.issn.1001-0890.2014.04.007
    [9]Li Yuansheng, Li Xiangfang, Teng Sainan, Zhang Qinghui. New Productivity Calculation Method Considering No Constant Starting Pressure Drop and High Velocity Non-Darcy Flow[J]. Petroleum Drilling Techniques, 2012, 40(2): 70-75. DOI: 10.3969/j.issn.1001-0890.2012.02.014
    [10]Yu Jifei, Li Li, He Baosheng, Guan Hongxiang, Li Weichao, Sui Xianfu. Wellhead Pressure Prediction Method during Well Shut-in for Offshore Flowing Oil Wells[J]. Petroleum Drilling Techniques, 2012, 40(1): 83-87. DOI: 10.3969/j.issn.1001-0890.2012.01.017
  • Cited by

    Periodical cited type(8)

    1. 张亚洲. 回接筒顶部修复工具的研制与应用. 钻采工艺. 2023(01): 110-114 .
    2. 王德坤,邓艾,周倩,刘运楼. 双鱼X井短回接插挂一体化固井技术实践. 天然气技术与经济. 2023(06): 16-20+87 .
    3. 杨玉豪,张万栋,韩成,张超,徐一龙,刘贤玉. 南海高温高压气田尾管回接管柱改进及入井质量控制. 断块油气田. 2020(02): 253-257 .
    4. 孙泽秋,魏钊,代红涛,覃毅,陈涛. 新型封隔式回接装置及工艺技术研究. 石油工业技术监督. 2018(07): 52-55 .
    5. 孙泽秋,代红涛,魏钊,丁玲玲,覃毅. 基于新型封隔式回接装置的尾管回接关键技术. 天然气与石油. 2018(02): 68-72 .
    6. 李鹏飞,邹传元,刘洪彬. 顺南区块系列特制固井工具的研制与应用. 钻采工艺. 2018(02): 26-29 .
    7. 王秀影,胡书宝,秦义,张彬,游子卫,黄海鸿. 雁翎潜山注气重力驱钻完井难点与对策. 断块油气田. 2017(04): 592-595 .
    8. 吴江,朱新华,李炎军,杨仲涵. 莺歌海盆地东方13-1气田高温高压尾管固井技术. 石油钻探技术. 2016(04): 17-21 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (40) PDF downloads (19) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return