Citation: | ZHU Yujie, HU Liang, JIA Peng. Design and testing of electric whipstock with gear transmission for coiled tubing drilling [J]. Petroleum Drilling Techniques, 2025, 53(2):97−106. DOI: 10.11911/syztjs.2025030 |
Whipstock is essential for directional drilling with coiled tubing, and the electric whipstock offers great technical advantages with its ability to make continuous and accurate tool face angle adjustments. However, due to narrow downhole radial space and high torque requirements for directional drilling, the design of the key structure in the electric whipstock, namely the gear reducer, becomes a difficult point of development. Therefore, a kind of electric whipstock based on a high-torque motor and multi-stage planetary gear reducer was designed, and the planetary gear reducer was optimized. The product of three key parameters, i.e, bending fatigue strength safety factor, contact fatigue strength safety factor, and output torque, was used as the basis for optimization so that the optimal gear ratio was obtained under the required space, and the finite-element strength calibration and the actual load carrying capacity of the gear reducer tests were carried out. The results show that the actual load bearing capacity of the designed two-stage planetary gear reducer of the electric whipstock exceeds the design target of 800 N·m, and the instantaneous capacity can reach 1 260 N·m, which meets the requirements of directional drilling operation of the coiled tubing drilling in the field. The research results can provide a reference for the design and processing assembly of future electric whipstock.
[1] |
贺会群. 连续油管技术与装备发展综述[J]. 石油机械,2006,34(1):1–6. doi: 10.3969/j.issn.1001-4578.2006.01.001
HE Huiqun. Development of coiled tubing technique and equipment[J]. China Petroleum Machinery, 2006, 34(1): 1–6. doi: 10.3969/j.issn.1001-4578.2006.01.001
|
[2] |
胡亮,高德利. 连续管钻定向井工具面角调整方法研究[J]. 石油钻探技术,2015,43(2):50–53.
HU Liang, GAO Deli. Study on a method for tool face re-orientation with coiled tubing drilling[J]. Petroleum Drilling Techniques, 2015, 43(2): 50–53.
|
[3] |
贾涛,张燕萍,吴千里. 连续管侧钻技术的研究及现场试验[J]. 石油机械,2017,45(7):30–33.
JIA Tao, ZHANG Yanping, WU Qianli. Research and field test of coiled tubing sidetracking technology[J]. China Petroleum Machinery, 2017, 45(7): 30–33.
|
[4] |
CHOUDHARY A, MENEZES R, OGRA R, et al. Hybrid drilling rig with rotating coiled tubing[R]. SPE 112888, 2008.
|
[5] |
李寅,尹方雷,白冬青. 连续管钻井技术研究进展及应用[J]. 焊管,2023,46(7):71–75.
LI Yin, YIN Fanglei, BAI Dongqing. Research progress and application of coiled tubing drilling technology[J]. Welded Pipe and Tube, 2023, 46(7): 71–75.
|
[6] |
苗芷芃,万教育,徐华冬,等. 连续管钻井液压定向器的设计与室内试验评价[J]. 石油管材与仪器,2021,7(4):5–8.
MIAO Zhipeng, WAN Jiaoyu, XU Huadong, et al. Development and laboratory test of continuous pipe drilling orientation tool[J]. Petroleum Tubular Goods & Instruments, 2021, 7(4): 5–8.
|
[7] |
ROSS M, ANYANWU O N, KLOTZ C, et al. Rib-steered motor technology: The revolutionary approach extends the coiled tubing drilling application scope[R]. SPE 153573, 2012.
|
[8] |
邢志晟,孔璐琳,祝传增,等. 连续管钻井肋式定向器执行机构偏置位移优化[J]. 石油机械,2023,51(2):26–32.
XING Zhisheng, KONG Lulin, ZHU Chuanzeng, et al. Research on optimization of actuator offset displacement of rib-type orientation tool for coiled tubing drilling[J]. China Petroleum Machinery, 2023, 51(2): 26–32.
|
[9] |
MEEK D E, LEISING L J, ROWATT J D. Apparatus and method for orienting a downhole tool: US 6419014 B1[P]. 2002-07-16.
|
[10] |
ZEGARRA E, MEEK D, UDO C, et al. Intelligent wireless orienter for coiled tubing drilling: development to field test[R]. SPE 74836, 2002.
|
[11] |
苗芷芃,夏宏南,南丽华,等. 连续管钻井液压定向器的研制[J]. 石油机械,2019,47(6):22–27.
MIAO Zhipeng, XIA Hongnan, NAN Lihua, et al. Hydraulic orientation tool for coiled tubing drilling[J]. China Petroleum Machinery, 2019, 47(6): 22–27.
|
[12] |
胡亮,阮臣良,崔晓杰,等. 新型连续管钻井用电液定向装置的研制[J]. 石油钻采工艺,2019,41(6):728–733.
HU Liang, RUAN Chenliang, CUI Xiaojie, et al. The development of a novel electric-hydraulic orienter used for coiled tubing drilling[J]. Oil Drilling & Production Technology, 2019, 41(6): 728–733.
|
[13] |
马卫国,王力,王程飞. 连续管钻井电液双螺旋传动定向器的设计[J]. 石油机械,2020,48(4):37–42.
MA Weiguo, WANG Li, WANG Chengfei. Design of electro-hydraulic double helix drive orienter for coiled tubing drilling[J]. China Petroleum Machinery, 2020, 48(4): 37–42.
|
[14] |
李猛,贺会群,张云飞,等. 连续管钻井定向器技术现状与发展建议[J]. 石油机械,2015,43(1):32–37. doi: 10.3969/j.issn.1001-4578.2015.01.007
LI Meng, HE Huiqun, ZHANG Yunfei, et al. The status quo and development suggestion on the coiled tubing drilling orienter[J]. China Petroleum Machinery, 2015, 43(1): 32–37. doi: 10.3969/j.issn.1001-4578.2015.01.007
|
[15] |
李猛,贺会群,都亚男,等. 连续管钻井电液定向器结构设计[J]. 石油机械,2015,43(11):1–6.
LI Meng, HE Huiqun, DU Yanan, et al. Structure design of CTD electric-over-hydraulic orienter[J]. China Petroleum Machinery, 2015, 43(11): 1–6.
|
[16] |
THATCHER D A A, SZUTIAK G A, LEMAY M M. Integration of coiled tubing underbalanced drilling services to improve efficiency and value[R]. SPE 60708, 2000.
|
[17] |
TURNER D R, HARRIS T W R, SLATER M, et al. Electric coiled tubing drilling: a smarter CT drilling system[R]. SPE 52791, 1999.
|
[18] |
ANDERSON D R, DOREL A, MARTIN R. A new, integrated, wireline-steerable, bottom hole assembly brings rotary drilling-like capabilities to coiled tubing drilling[R]. SPE 37654, 2008.
|
[19] |
张展,武文辉. 2K−H型行星齿轮装置设计[J]. 矿山机械,2020,48(11):45–49. doi: 10.3969/j.issn.1001-3954.2020.11.010
ZHANG Zhan, WU Wenhui. Design of 2K-H planetary gear device[J]. Mining & Processing Equipment, 2020, 48(11): 45–49. doi: 10.3969/j.issn.1001-3954.2020.11.010
|
[20] |
OHLINGER J J, GANTT L L, MCCARTY T M. A comparison of mud pulse and E-line telemetry in Alaska CTD operations[R]. SPE 74842, 2002.
|
[21] |
张展. 实用齿轮设计计算手册[M]. 北京:机械工业出版社,2010:695−698.
ZHANG Zhan. Practical gear design and calculation[M]. Beijing: China Machine Press, 2010: 695−698.
|
1. |
王贤君,刘宇,孙丽静,马德成,胡智凡. 基于分支缝真实起裂方向的分支缝形成条件研究. 采油工程. 2025(01): 75-78+88 .
![]() | |
2. |
薛长荣,陈润生. 低渗透油田压裂技术研究分析. 石化技术. 2024(06): 117-119 .
![]() | |
3. |
王纪伟,宋丽阳,康玉柱. 暂堵转向技术在页岩油气中的应用分析与发展方向. 断块油气田. 2024(06): 1122-1128 .
![]() | |
4. |
王哲,曹广胜,白玉杰,王培伦,王鑫. 低渗透油藏提高采收率技术现状及展望. 特种油气藏. 2023(01): 1-13 .
![]() | |
5. |
刘彝,刘玲,姜喜梅,于洋洋,吴均. 大斜度井精细分段压裂技术研究及应用. 中国矿业. 2023(S1): 470-474 .
![]() | |
6. |
邹龙庆,何怀银,杨亚东,龚新伟,肖剑锋,苌北. 页岩气水平井暂堵球运移特性数值模拟研究. 石油钻探技术. 2023(05): 156-166 .
![]() | |
7. |
于海山,刘洪俊,王庆太. 低渗透油田套损井压裂技术应用与效果分析. 石油石化节能与计量. 2023(10): 17-21 .
![]() | |
8. |
刘彝,杨辉,吴佐浩. 强变形暂堵转向压裂技术研究及应用. 钻井液与完井液. 2022(01): 114-120 .
![]() | |
9. |
胡智凡. 大庆低渗透储层直井多分支缝重复压裂提产试验. 采油工程. 2022(01): 16-20+81-82 .
![]() | |
10. |
达引朋,李建辉,王飞,黄婷,薛小佳,余金柱. 长庆油田特低渗透油藏中高含水井调堵压裂技术. 石油钻探技术. 2022(03): 74-79 .
![]() | |
11. |
刘尧文,明月,张旭东,卞晓冰,张驰,王海涛. 涪陵页岩气井“套中固套”机械封隔重复压裂技术. 石油钻探技术. 2022(03): 86-91 .
![]() | |
12. |
何成江,姜应兵,文欢,李翔. 塔河油田缝洞型油藏“一井多控”高效开发关键技术. 石油钻探技术. 2022(04): 37-44 .
![]() | |
13. |
胡智凡,王贤君,王晓娟,王维,陈希迪. 直井缝内暂堵转向压裂分支缝起裂方向研究. 石油地质与工程. 2022(05): 111-114 .
![]() | |
14. |
张金发,李亭,吴警宇,管英柱,徐摩,但植华,周明秀. 特低渗透砂岩储层敏感性评价与酸化增产液研制. 特种油气藏. 2022(05): 166-174 .
![]() | |
15. |
张瀚澜,赖小娟,王鹏程,杨文飞,刘学文,马锐,曹建坤,杨明亮. 新型自降解压裂转向材料的合成与表征. 科学技术与工程. 2022(35): 15586-15591 .
![]() | |
16. |
王贤君,胡智凡,张洪涛,陈希迪,王维. 大庆外围低渗透油田直井多分支缝压裂提产技术. 石油钻采工艺. 2022(05): 632-636 .
![]() | |
17. |
朱瑞彬,王鑫,许正栋,刘国华,李凝,龙长俊,宋立,贾江芬. 吉兰泰浅层变质岩储层水平井压裂技术. 石油钻采工艺. 2022(06): 733-739 .
![]() | |
18. |
秦浩,汪道兵,李敬法,孙东亮,宇波. 基于黏聚层单元的缝内暂堵压力演化规律的有限元数值研究. 科学技术与工程. 2021(10): 4011-4019 .
![]() | |
19. |
王磊,盛志民,赵忠祥,宋道海,王丽峰,王刚. 吉木萨尔页岩油水平井大段多簇压裂技术. 石油钻探技术. 2021(04): 106-111 .
![]() | |
20. |
侯祥丽,邓璐. 石油低渗透储层安全损害评价方法. 能源与环保. 2021(09): 142-148 .
![]() | |
21. |
武月荣,高岗,谷向东. 苏里格气田水平井段内精细分簇压裂技术研究与应用. 钻采工艺. 2021(06): 59-63 .
![]() | |
22. |
王晓蕾,张超会,张洪涛,胡智凡,魏天超. 致密油储层直井多分支缝压裂提产试验. 采油工程. 2021(02): 11-16+91 .
![]() | |
23. |
梁玉凯,于晓聪,袁辉,阚长宾,陶世林,马丁. 低渗透油藏自发生成中相微乳液洗油体系. 油田化学. 2021(04): 690-696 .
![]() | |
24. |
王峻源,徐太平,周京伟,袁发明. 高强度长效暂堵剂在水平井重复压裂上的应用. 化工设计通讯. 2020(08): 83-85 .
![]() | |
25. |
岑涛,夏海帮,雷林. 渝东南常压页岩气压裂关键技术研究与应用. 油气藏评价与开发. 2020(05): 70-76 .
![]() | |
26. |
蔡卓林,赵续荣,南荣丽,陈华生,李秀辉,梁天博. 暂堵转向结合高排量体积重复压裂技术. 断块油气田. 2020(05): 661-665 .
![]() | |
27. |
覃孝平,吴均,李翠霞,卢军凯. 压裂用水溶性暂堵剂的合成及性能. 石油化工. 2020(09): 898-904 .
![]() | |
28. |
李翠霞,覃孝平,张琰,赵彬. 水溶性AM-AA-NVP-AMPS-PDE暂堵剂的合成与性能. 化学研究与应用. 2020(10): 1884-1890 .
![]() | |
29. |
施建国,于洋,王黎,李立,宋志龙. 超大粒径暂堵剂注入装置研究. 石油矿场机械. 2020(06): 74-78 .
![]() |