ZHANG Junbin, YANG Zhidi, QIN Shili, et al. Single-tank dual-electric submersible pump technology in offshore extended reach wells [J]. Petroleum Drilling Techniques, 2025, 53(2):46−51. DOI: 10.11911/syztjs.2025028
Citation: ZHANG Junbin, YANG Zhidi, QIN Shili, et al. Single-tank dual-electric submersible pump technology in offshore extended reach wells [J]. Petroleum Drilling Techniques, 2025, 53(2):46−51. DOI: 10.11911/syztjs.2025028

Single-Tank Dual-Electric Submersible Pump Technology in Offshore Extended Reach Wells

More Information
  • Received Date: January 02, 2025
  • Revised Date: March 30, 2025
  • Available Online: April 05, 2025
  • Externally arranged cables are prone to damage when offshore extended reach wells adopt conventional dual-tank dual-pump technology for production. Moreover, the dual-tank dual-pump configuration creates excessive projection area, increasing risks of flow restriction and erosion. In the dual Y-joint structure, the combined projection area of the bypass tubing and high-capacity electric submersible pumps (ESPs) exceeds the casing’s inner diameter, with the bypass tubing also facing erosion risks. To address these challenges, a machine-assisted production scheme featuring a single-tank dual-ESP configuration was developed through a comparative analysis of actual equipment structures by using design software. By employing specialized tools such as in-tank packers and expandable rotating subs to arrange cables and pipelines within the tank, a single-tank dual-ESP technology was formed. Research results show that this technology reduces the outer diameter of the tank’s projection to 193.7 mm, significantly smaller than the ESP’s outer diameter of 215.9 mm in the dual Y-joint structure. This solution effectively mitigates frequent cable damage and severe equipment erosion in traditional external ESP arrangements. Successful field application of the technology has been achieved in the Enping 21−4 Oilfield and Liuhua Oilfield in the South China Sea. The research results provide technical support for the popularization and application of ESPs in offshore extended reach wells.

  • [1]
    张海山. 中国海洋石油大位移井钻井技术现状及展望[J]. 石油钻采工艺,2023,45(1):1–11.

    ZHANG Haishan. Status and prospect of CNOOC's extended reach well drilling technologies[J]. Oil Drilling & Production Technology, 2023, 45(1): 1–11.
    [2]
    熊振宇,陈进程,汪珂欣,等. 东海大位移井钻井井漏特征分析及风险识别[J]. 石油地质与工程,2024,38(6):102–106. doi: 10.3969/j.issn.1673-8217.2024.06.018

    XIONG Zhenyu, CHEN Jincheng, WANG Kexin, et al. Analysis of lost circulation characteristics and risk identification of large displacement well in East China Sea[J]. Petroleum Geology and Engineering, 2024, 38(6): 102–106. doi: 10.3969/j.issn.1673-8217.2024.06.018
    [3]
    喻贵民,霍宏博,谢涛,等. 渤海超大位移井水平段裸眼延伸极限预测及影响因素分析[J]. 断块油气田,2023,30(2):337–346.

    YU Guimin, HUO Hongbo, XIE Tao, et al. Prediction of open-hole extension limit and influencing factors analysis of horizontal section of mega-extended-reach well in Bohai Sea[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 337–346.
    [4]
    安申庆,李红军,高振豪. 东海大位移井定向工艺技术及应用[J]. 石化技术,2025,32(2):221–223. doi: 10.3969/j.issn.1006-0235.2025.02.077

    AN Shenqing, LI Hongjun, GAO Zhenhao. Directional drilling technology for Extended-Reach wells in the East China Sea and its applications[J]. Petrochemical Industry Technology, 2025, 32(2): 221–223. doi: 10.3969/j.issn.1006-0235.2025.02.077
    [5]
    迟建功. 大庆古龙页岩油水平井钻井技术[J]. 石油钻探技术,2023,51(6):12–17. doi: 10.11911/syztjs.2023002

    CHI Jiangong. Drilling technologies for horizontal wells of Gulong shale oil in Daqing[J]. Petroleum Drilling Techniques, 2023, 51(6): 12–17. doi: 10.11911/syztjs.2023002
    [6]
    彭杨,叶长青,孙风景,等. 高含硫气井罐装电潜泵系统排水采气工艺[J]. 天然气工业,2018,38(2):67–73. doi: 10.3787/j.issn.1000-0976.2018.02.009

    PENG Yang, YE Changqing, SUN Fengjing, et al. Drainage gas recovery technology based on canned ESP system of high-sulfur gas wells[J]. Natural Gas Industry, 2018, 38(2): 67–73. doi: 10.3787/j.issn.1000-0976.2018.02.009
    [7]
    张宏录,程百利,张龙胜,等. 页岩气井同心双管排采新工艺研究[J]. 石油钻探技术,2013,41(5):36–40. doi: 10.3969/j.issn.1001-0890.2013.05.007

    ZHANG Honglu, CHENG Baili, ZHANG Longsheng, et al. New process of water drainage for shale gas recovery[J]. Petroleum Drilling Techniques, 2013, 41(5): 36–40. doi: 10.3969/j.issn.1001-0890.2013.05.007
    [8]
    路宇翔. 人工举升电潜泵失效因素分析及改进方案[J]. 中国石油和化工标准与质量,2024,44(8):16–17. doi: 10.3969/j.issn.1673-4076.2024.08.006

    LU Yuxiang. Root cause analysis and enhanced solutions for ESP failures in artificial lift applications[J]. China Petroleum and Chemical Standard and Quality, 2024, 44(8): 16–17. doi: 10.3969/j.issn.1673-4076.2024.08.006
    [9]
    ANAND S, ROSLAND E A B, GHONIM E O, et al. Troubleshooting cable deployed thru tubing electrical submersible pumps: A case study from South East Asia[R]. SPE 205614, 2021.
    [10]
    于志刚,张德政,胡振超,等. 双电潜泵井封隔式Y-tool工具研究与应用[J]. 特种油气藏,2022,29(3):150–155. doi: 10.3969/j.issn.1006-6535.2022.03.022

    YU Zhigang, ZHANG Dezheng, HU Zhenchao, et al. Study and application of packer Y-tool in dual-ESP wells[J]. Special Oil & Gas Reservoirs, 2022, 29(3): 150–155. doi: 10.3969/j.issn.1006-6535.2022.03.022
    [11]
    李昂,杨万有,郑春峰,等. 海上油田采油技术创新实践及发展方向[J]. 石油钻探技术,2024,52(6):75–85.

    LI Ang, YANG Wanyou, ZHENG Chunfeng, et al. Innovation practice and prospect of oil production technologies in offshore oil-fields[J]. Petroleum Drilling Techniques, 2024, 52(6): 75–85.
    [12]
    张俊斌,秦世利,李勇,等. 流花4–1油田水下双电潜泵完井系统设计[J]. 中国海上油气,2014,26(3):98–101.

    ZHANG Junbin, QIN Shili, LI Yong, et al. The design of subsea dual ESP completion system for LH4-1 Oilfield[J]. China Offshore Oil and Gas, 2014, 26(3): 98–101.
    [13]
    褚英杰,郭沛文,刘华伟,等. 渤海油田Y型电泵分采管柱优化设计研究[J]. 石油和化工设备,2019,22(8):21–23. doi: 10.3969/j.issn.1674-8980.2019.08.006

    CHU Yingjie, GUO Peiwen, LIU Huawei, et al. Research on optimization design of Y-type electric pump separating pipe string in Bohai Oilfield[J]. Petro & Chemical Equipment, 2019, 22(8): 21–23. doi: 10.3969/j.issn.1674-8980.2019.08.006
    [14]
    陈胜宏,范白涛,邵明仁,等. 海上无人简易平台双电潜泵完井技术[J]. 中国海上油气,2009,21(5):335–337. doi: 10.3969/j.issn.1673-1506.2009.05.011

    CHEN Shenghong, FAN Baitao, SHAO Mingren, et al. The technology of well completion with dual ESP on offshore unmanned platform[J]. China Offshore Oil and Gas, 2009, 21(5): 335–337. doi: 10.3969/j.issn.1673-1506.2009.05.011
    [15]
    王发清,何剑锋,秦德友,等. 罐装电潜泵举升系统数值模拟研究[J]. 内蒙古石油化工,2024,50(12):1–5. doi: 10.3969/j.issn.1006-7981.2024.12.001

    WANG Faqing, HE Jianfeng, QIN Deyou, et al. Study on the numerical simulation of canned electric submersible pump lifting system[J]. Inner Mongolia Petrochemical Industry, 2024, 50(12): 1–5. doi: 10.3969/j.issn.1006-7981.2024.12.001
    [16]
    曾奇灯,张斌斌,马宇奔,等. 大位移井完井管柱下放受力优化[J]. 中国科技信息,2024(8):88–91. doi: 10.3969/j.issn.1001-8972.2024.8.zgkjxx202408031

    ZENG Qideng, ZHANG Binbin, MA Yuben, et al. Mechanical optimization of long reach completion string[J]. China Science and Technology Information, 2024(8): 88–91. doi: 10.3969/j.issn.1001-8972.2024.8.zgkjxx202408031
    [17]
    SHAKHOVA A, LISYUTINA N, LEBEDEVA I, et al. Remote reservoir exploration in odoptu-more field by delivering ERD wells using multilateral drilling technology[R]. SPE 206450, 2021.
    [18]
    SHAKHOVA A, LEBEDEVA I, VALSHIN O, et al. Integrated approach enabled successful delivery of the longest well on odoptu-more field for Russian National Oil Company[R]. SPE 201848, 2020.
    [19]
    张飞,司念亭,李君宝,等. 曹妃甸油田大位移水平井完井技术[J]. 石化技术,2016,23(5):148. doi: 10.3969/j.issn.1006-0235.2016.05.114

    ZHANG Fei, SI Nianting, LI Junbao, et al. Completion technology of extended reach wells in Caofeidian Oilfield[J]. Petrochemical Industry Technology, 2016, 23(5): 148. doi: 10.3969/j.issn.1006-0235.2016.05.114
    [20]
    PEDROSO C A, CAVALCANTE B, MARSILI M, et al. Starting up the most powerful ESP installed into deepwater offshore wells completed with open hole gravel packing: a real challenge[R]. SPE 194407, 2019.
    [21]
    杨元明. 高产深井双电潜泵分层开采完井工艺[J]. 西部探矿工程,2020,32(4):33–36. doi: 10.3969/j.issn.1004-5716.2020.04.011

    YANG Yuanming. Dual-ESP well completion technology in high yield deep wells[J]. West-China Exploration Engineering, 2020, 32(4): 33–36. doi: 10.3969/j.issn.1004-5716.2020.04.011
    [22]
    李想. 海上边际油田钻完井的关键技术探讨[J]. 中国石油和化工标准与质量,2024,44(7):187–189.

    LI Xiang. Discussion on key technologies of drilling and completion in marginal offshore oil fields[J]. China Petroleum and Chemical Standard and Quality, 2024, 44(7): 187–189.
  • Related Articles

    [1]ZHANG Weiguo, JIANG Kun, SONG Yu, DENG Chenghui, HUANG Yiqiang, MA Yi. Drilling Speed Enhancement Method for Extended Reach Wells Based on Machine Learning and Bayesian Optimization[J]. Petroleum Drilling Techniques, 2025, 53(2): 38-45. DOI: 10.11911/syztjs.2025027
    [2]QIN Jianyu, LI Bo, RAO Zhihua, JIN Yong, ZHANG Yong, LIU Yongfeng. Key Cementing Technologies for an Ultra-Deep Extended Reach Well in Enping 21–4 Oilfield, Eastern South China Sea[J]. Petroleum Drilling Techniques, 2025, 53(2): 30-37. DOI: 10.11911/syztjs.2025026
    [3]MA Jihe, GENG Tie, SONG Xiaowei, DI Mingli, YANG Bo. Drilling Fluid Technology for Ultra-Deep Extended Reach Wells in Enping 21−4 Oilfield, Eastern South China Sea[J]. Petroleum Drilling Techniques, 2025, 53(2): 21-29. DOI: 10.11911/syztjs.2025025
    [4]GUO Yongbin, ZUO Kun, DENG Chenghui, LI Jingjing, ZHANG Kai, LEI Hong. Key Drilling Technologies for Ultra-Deep Extended Reach Horizontal Well in Enping 21−4 Oilfield, Eastern South China Sea[J]. Petroleum Drilling Techniques, 2025, 53(2): 11-20. DOI: 10.11911/syztjs.2025021
    [5]GAO Deli, HUANG Wenjun, LI Xin. Research on Extension Limits and Engineering Design Methods for Extended Reach Drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 1-8. DOI: 10.11911/syztjs.2019069
    [6]WANG Bo, WANG Xu, XING Zhiqian, YUAN Zongling, LI Shijie. Drilling and Completion Technologies of Extended-Reach Wells in the Artificial Island of the Jidong Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(4): 42-46. DOI: 10.11911/syztjs.2018118
    [7]LI Hongwei, ZHANG Bin. Drilling Techniques in J-Shaped Extended Reach Horizontal Wells in Shallow Coal Bed Methane Reservoirs in the Zhijin Block[J]. Petroleum Drilling Techniques, 2016, 44(2): 46-50. DOI: 10.11911/syztjs.201602008
    [8]Zhang Zhicai, Zhao Huaizhen, Ci Guoliang, Li Jun, Ji Yibing. Drilling Fluid in Zhuang 129-1HF Extended Reach Well Drilling[J]. Petroleum Drilling Techniques, 2014, 42(6): 34-39. DOI: 10.11911/syztjs.201406007
    [9]Su Feng, Zhang Weiguo, Li Zemin, Chang Yuanjiang, Chen Guoming. Application of Underwater GPS Positioning Technique in Wellhead Positioning of Liuhua 4-1 Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(3): 40-45. DOI: 10.3969/j.issn.1001-0890.2013.03.008
    [10]Liang Erguo, Li Zifeng, Wang Changjin, Han Dongying. Casing Abrasion Prediction for Deep and Extended Reach Wells[J]. Petroleum Drilling Techniques, 2013, 41(2): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.02.013
  • Cited by

    Periodical cited type(10)

    1. 黄熠,刘和兴,刘智勤,彭巍,徐超. 南海西部浅层大位移水平井钻井关键技术与实践. 中国海上油气. 2023(06): 115-123 .
    2. 程仲,李宁,丁翔翔,陈玉山,韩雪银,李天太,张菲菲. 浅层大位移井井眼清洁效果评价及优化方法. 西安石油大学学报(自然科学版). 2022(06): 60-66+96 .
    3. 李杉. 大位移井NP13-1346钻井技术. 西部探矿工程. 2021(03): 110-113+118 .
    4. 陈新勇,徐明磊,马樱,徐雅萍,赵博,韩煦. 杨税务潜山油气藏大位移井钻井完井关键技术. 石油钻探技术. 2021(02): 14-19 . 本站查看
    5. 张强,秦世利,饶志华,田波,左坤. 南海超大水垂比大位移M井钻井关键技术. 石油钻探技术. 2021(05): 19-25 . 本站查看
    6. 李泽群. 以A油田AX1井为例探讨大位移井钻井关键技术. 石油和化工设备. 2020(03): 92-94 .
    7. 豆志远,王昆剑,李进,谢小品,李瑞峰,朱培,王伟. 渤海油田水平分支井钻完井关键技术. 特种油气藏. 2020(02): 157-163 .
    8. 王建龙,许京国,杜强,金海峰,程东,郑锋,李瑞明. 大港油田埕海2-2人工岛钻井提速提效关键技术. 石油机械. 2019(07): 30-35 .
    9. 高德利,黄文君,李鑫. 大位移井钻井延伸极限研究与工程设计方法. 石油钻探技术. 2019(03): 1-8 . 本站查看
    10. 王建龙,齐昌利,柳鹤,陈鹏,汪鸿,郑永锋. 沧东凹陷致密油气藏水平井钻井关键技术. 石油钻探技术. 2019(05): 11-16 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (62) PDF downloads (23) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return