Citation: | HAO Xining, LI Zhong, DANG Bo, et al. Post-casing reservoir monitoring system and influence law based on line sources [J]. Petroleum Drilling Techniques, 2025, 53(2):175−180. DOI: 10.11911/syztjs.2025018 |
In order to achieve real-time monitoring of reservoir parameters such as oil-water interface and online precise control of wellbore production, a post-casing reservoir monitoring system based on line sources was established according to the transient electromagnetic theory. Through numerical simulation, the basic characteristics of the post-casing reservoir monitoring system and the influence law of different factors on the post-casing detection performance of the reservoirs based on line sources were analyzed. The simulation results show that using the casing as a line source can apply a greater current, and the strength of the secondary field signal is positively correlated with the line source current. The suitable emission length of the line source is around 300 m. A larger wall thickness of the casing indicates a higher amplitude of the electric field response. The results show that the post-casing reservoir monitoring system based on line sources has good oil-water interface recognition ability within a range of 15 m, which can provide effective technical means for online monitoring and stable oil and water control of oil and gas wells.
[1] |
贾德利,刘合,张吉群,等. 大数据驱动下的老油田精细注水优化方法[J]. 石油勘探与开发,2020,47(3):629–636. doi: 10.11698/PED.2020.03.19
JIA Deli, LIU He, ZHANG Jiqun, et al. Data-driven optimization for fine water injection in a mature oil field[J]. Petroleum Exploration and Development, 2020, 47(3): 629–636. doi: 10.11698/PED.2020.03.19
|
[2] |
王静,杨彬. 精细注水在渤海某油田J区的应用研究[J]. 承德石油高等专科学校学报,2023,25(2):11–16. doi: 10.3969/j.issn.1008-9446.2023.02.004
WANG Jing, YANG Bin. Application of fine water injection in block J of an oilfield in bohai sea[J]. Journal of Chengde Petroleum College, 2023, 25(2): 11–16. doi: 10.3969/j.issn.1008-9446.2023.02.004
|
[3] |
孙福街,徐文江,姜维东,等. 中国海油低渗及非常规油气藏储层改造技术进展及展望[J]. 中国海上油气,2024,36(1):109–116.
SUN Fujie, XU Wenjiang, JIANG Weidong, et al. Progress and prospects of CNOOC’s low permeability and unconventional oil and gas reservoir stimulation technologies[J]. China Offshore Oil and Gas, 2024, 36(1): 109–116.
|
[4] |
吴飞鹏,李娜,孙德旭,等. 脉动水驱孔隙压力传输规律数学模型[J]. 中国石油大学学报(自然科学版),2022,46(4):94–101. doi: 10.3969/j.issn.1673-5005.2022.04.011
WU Feipeng, LI Na, SUN Dexu, et al. Mathematical model of pore pressure transmission law in pulsating water flooding[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(4): 94–101. doi: 10.3969/j.issn.1673-5005.2022.04.011
|
[5] |
刘会锋,贾婉婷,崔龙连,等. 考虑储层非均质性的限流筛管完井设计及应用[J]. 石油机械,2023,51(4):97–104.
LIU Huifeng, JIA Wanting, CUI Longlian, et al. Design and application of limited entry liner completion considering reservoir heterogeneity[J]. China Petroleum Machinery, 2023, 51(4): 97–104.
|
[6] |
邵晓岩,杨学武,孟令为,等. W油田C6低渗透油藏水驱后储层特征变化规律[J]. 特种油气藏,2022,29(5):107–112. doi: 10.3969/j.issn.1006-6535.2022.05.015
SHAO Xiaoyan, YANG Xuewu, MENG Lingwei, et al. Change law of reservoir characteristics after water flooding of C6 low permeability reservoir in W Oilfield[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 107–112. doi: 10.3969/j.issn.1006-6535.2022.05.015
|
[7] |
石立华,师调调,廖志昊,等. 低渗致密砂岩油藏水驱储层变化规律[J]. 特种油气藏,2024,31(3):106–115. doi: 10.3969/j.issn.1006-6535.2024.03.014
SHI Lihua, SHI Diaodiao, LIAO Zhihao, et al. The variation law of water flooding reservoir in low permeability tight sandstone reservoirs[J]. Special Oil & Gas Reservoirs, 2024, 31(3): 106–115. doi: 10.3969/j.issn.1006-6535.2024.03.014
|
[8] |
骆晨,刘慧卿,柏宗宪,等. 低渗透油藏空气驱氧化特征及驱油效果评价[J]. 特种油气藏,2024,31(4):109–117. doi: 10.3969/j.issn.1006-6535.2024.04.014
LUO Chen, LIU Huiqing, BAI Zongxian, et al. Oxidation characteristics and oil displacement effect evaluation of air flooding in low permeability reservoirs[J]. Special Oil & Gas Reservoirs, 2024, 31(4): 109–117. doi: 10.3969/j.issn.1006-6535.2024.04.014
|
[9] |
张岩,冯海顺,翟勇,等. 低渗透稠油油藏CO2压驱提高采收率机理及规律研究[J]. 石油钻探技术,2024,52(6):97–106. doi: 10.11911/syztjs.2024070
ZHANG Yan, FENG Haishun, ZHAI Yong, et al. Mechanism and law of CO2 pressure flooding in enhancing oil recovery in low-permeability heavy oil reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(6): 97–106. doi: 10.11911/syztjs.2024070
|
[10] |
薄其众,戴涛,杨勇,等. 胜利油田樊142块特低渗透油藏CO2驱油储层压力动态变化研究[J]. 石油钻探技术,2016,44(6):93–98.
BO Qizhong, DAI Tao, YANG Yong, et al. Research on the changes in formation pressure performance of CO2 flooding in the ultra-low permeability oil reservoir: Block Fan 142 of the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(6): 93–98.
|
[11] |
毕昕瑶. 双示踪组合测井技术在G45-16C井区的应用分析[J]. 石油管材与仪器,2018,4(3):62–65.
BI Xinyao. Application effect analysis of double tracer combination logging technology in G45-16C Well Area[J]. Petroleum Instruments, 2018, 4(3): 62–65.
|
[12] |
PARDO D, MATUSZYK P J, PUZYREV V, et al. Chapter 3-Modeling of resistivity geophysical measurements[M]//PARDO D, MATUSZYK P J, PUZYREV V, et al. Modeling of resistivity and acoustic borehole logging measurements using finite element methods. Amsterdam: Elsevier, 2021: 77-113.
|
[13] |
DAVLATSHOEV S K. Evaluation of the quality of strengthening cementation of an enclosing sandstone massif under tensile stresses[J]. Power Technology and Engineering, 2022, 56(1): 46–51. doi: 10.1007/s10749-023-01469-0
|
[14] |
FAN Jilin, ZHANG Feng, TIAN Lili, et al. A method of monitoring gas saturation in carbon dioxide injection heavy oil reservoirs by pulsed neutron logging technology[J]. Petroleum Exploration and Development, 2021, 48(6): 1420–1429. doi: 10.1016/S1876-3804(21)60298-7
|
[15] |
孙歧峰,倪虹升,岳喜洲,等. 基于深度残差网络的随钻方位电磁波电阻率测井反演方法[J]. 石油钻探技术,2024,52(5):97–104.
SUN Qifeng, NI Hongsheng, YUE Xizhou, et al. Inversion of azimuthal electromagnetic wave resistivity LWD based on deep residual network[J]. Petroleum Drilling Techniques, 2024, 52(5): 97–104.
|
[16] |
秦文娟,康正明,张意,等. 模块化随钻电磁波测井仪器结构对测量信号的影响[J]. 石油钻探技术,2024,52(3):137–145. doi: 10.11911/syztjs.2023101
QIN Wenjuan, KANG Zhengming, ZHANG Yi, et al. Influence of structure of modular electromagnetic logging while drilling instrument on measurement signals[J]. Petroleum Drilling Techniques, 2024, 52(3): 137–145. doi: 10.11911/syztjs.2023101
|
[17] |
许孝凯,赵伟娜,张晋言,等. 三轴各向异性层状介质磁偶极子源电磁场递推算法及应用[J]. 石油钻探技术,2024,52(1):130–139. doi: 10.11911/syztjs.2023117
XU Xiaokai, ZHAO Weina, ZHANG Jinyan, et al. Recursive algorithm for electromagnetic fields from magnetic dipole in layered triaxial anisotropic medium and its application[J]. Petroleum Drilling Techniques, 2024, 52(1): 130–139. doi: 10.11911/syztjs.2023117
|
[18] |
刘鹏程,沈建国,沈永进. 瞬变电磁测井的过套管地层电导率探测[J]. 石油物探,2020,59(4):655–664. doi: 10.3969/j.issn.1000-1441.2020.04.016
LIU Pengcheng, SHEN Jianguo, SHEN Yongjin. Measuring formation conductivity by transient electromagnetic logging through casing[J]. Geophysical Prospecting for Petroleum, 2020, 59(4): 655–664. doi: 10.3969/j.issn.1000-1441.2020.04.016
|
[19] |
刘思慧,臧德福,张守伟,等. 瞬变电磁法过套管电阻率测井技术综述[J]. 地球物理学进展,2018,33(3):1088–1094. doi: 10.6038/pg2018BB0197
LIU Sihui, ZANG Defu, ZHANG Shouwei, et al. Review of the technology of transient electromagnetic resistivity logging through casing[J]. Progress in Geophysics, 2018, 33(3): 1088–1094. doi: 10.6038/pg2018BB0197
|
[20] |
党瑞荣,刘丹,贾惠芹,等. 基于线源的三维地电响应模型分析与仿真[J]. 电气应用,2014,33(5):54–58.
DANG Ruirong, LIU Dan, JIA Huiqin, et al. Analysis and simulation of three-dimensional geoelectric response model based on line source[J]. Electrotechnical Application, 2014, 33(5): 54–58.
|
[21] |
康正明,秦浩杰,张意,等. 基于LSTM神经网络的随钻方位电磁波测井数据反演[J]. 石油钻探技术,2023,51(2):116–124. doi: 10.11911/syztjs.2023047
KANG Zhengming, QIN Haojie, ZHANG Yi, et al. Data inversion of azimuthal electromagnetic wave logging while drilling based on LSTM neural network[J]. Petroleum Drilling Techniques, 2023, 51(2): 116–124. doi: 10.11911/syztjs.2023047
|
[22] |
郭晨,陈晓亮. 各向异性地层有限长线源电磁场响应研究[J]. 物探化探计算技术,2019,41(5):631–638. doi: 10.3969/j.issn.1001-1749.2019.05.11
GUO Chen, CHEN Xiaoliang. Electromagnetic field response of finite length line source in anisotropic formation[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41(5): 631–638. doi: 10.3969/j.issn.1001-1749.2019.05.11
|
[23] |
李亭亭,王佳,朱凯光. 井地电磁法勘探深度研究[J]. 地球物理学进展,2013,28(1):373–379. doi: 10.6038/pg20130141
LI Tingting, WANG Jia, ZHU Kaiguang. Research on the exploration depth of the borehole-surface electromagnetic field[J]. Progress in Geophysics, 2013, 28(1): 373–379. doi: 10.6038/pg20130141
|
1. |
焦卫国,王健,杨凤春,李志刚. 钻井提速技术在GT1井的综合应用. 石油工程建设. 2024(S1): 39-42 .
![]() | |
2. |
赵洪波,朱芝同,梁涛,赵志涛,朱迪斯,单文军,刘文武,何远信. 页岩气基础地质调查钻井技术研究进展及展望. 中国地质. 2023(02): 376-394 .
![]() | |
3. |
徐建飞,邹德永,高栋梁,王震. 切削-犁削-磨削混合金刚石钻头的研制及应用. 科技通报. 2022(10): 16-19 .
![]() | |
4. |
袁国栋,王鸿远,陈宗琦,母亚军,席宝滨. 塔里木盆地满深1井超深井钻井关键技术. 石油钻探技术. 2020(04): 21-27 .
![]() | |
5. |
王滨,邹德永,李军,杨宏伟,黄涛. 深部及复杂地层中PDC钻头综合改进方法. 石油钻采工艺. 2018(01): 44-51 .
![]() | |
6. |
刘笑傲,邹德永,陈修平. 强研磨性硬地层金钢石复合汽钻头孕镶块混合钻头优化设计试验. 科学技术与工程. 2017(29): 220-226 .
![]() | |
7. |
郭宝林,孙庆春. 鸭西背斜钻井提速技术试验及效果分析. 探矿工程(岩土钻掘工程). 2017(02): 53-56 .
![]() | |
8. |
陈彦霖,邹德永,马宇奔,王滨. PDC-孕镶块混合齿钻头同轨布齿出露高差试验优选. 钻采工艺. 2017(02): 14-16+76+5-6 .
![]() | |
9. |
董佳辉,殷忠玲. 基于微钻试验台检测系统的研究与设计. 自动化与仪器仪表. 2017(11): 75-77 .
![]() | |
10. |
袁军,邹德永,刘笑傲. 切向导入式旋流喷嘴辅助PDC钻头破岩实验. 断块油气田. 2016(04): 528-532 .
![]() | |
11. |
袁军,邹德永,钟洪娇,刘笑傲. 适合于研磨性硬地层的新型孕镶金刚石钻头优化设计试验研究. 科学技术与工程. 2016(04): 16-21 .
![]() | |
12. |
吴仲华,温林荣,丁世清,何育光,赵哲龙,付晓颖. 孕镶金刚石钻头配合螺杆钻具在乌参1井应用. 石油矿场机械. 2016(05): 83-87 .
![]() | |
13. |
谭凯文,肖华平,刘书海. 4种钻采装备的减磨抗磨损技术研究进展. 石油矿场机械. 2016(05): 102-110 .
![]() | |
14. |
杨顺辉. 新型多重复合切削钻头的研制. 石油机械. 2016(10): 21-24 .
![]() | |
15. |
郭宝林,孙庆春,于建克,安川. 鸭K区块钻井提速与钻头使用分析. 天然气与石油. 2016(06): 60-65+145 .
![]() | |
16. |
邹德永,郭玉龙,赵建,陈修平,王家骏,于金平. 锥形PDC单齿破岩试验研究. 石油钻探技术. 2015(01): 122-125 .
![]() | |
17. |
关舒伟. 新型孕镶金刚石钻头研制及试验. 石油钻探技术. 2015(04): 129-132 .
![]() | |
18. |
陈修平,邹德永,李东杰,娄尔标. PDC钻头防泥包性能数值模拟研究. 石油钻探技术. 2015(06): 108-113 .
![]() |