WAN Tao, WANG Bo, WANG Wei, et al. Experimental study on improving permeability of shale by CO2 huff and puff assisted by ultra-low temperature liquid nitrogen [J]. Petroleum Drilling Techniques, 2025, 53(2):151−158. DOI: 10.11911/syztjs.2025015
Citation: WAN Tao, WANG Bo, WANG Wei, et al. Experimental study on improving permeability of shale by CO2 huff and puff assisted by ultra-low temperature liquid nitrogen [J]. Petroleum Drilling Techniques, 2025, 53(2):151−158. DOI: 10.11911/syztjs.2025015

Experimental Study on Improving Permeability of Shale by CO2 Huff and Puff Assisted by Ultra-Low Temperature Liquid Nitrogen

More Information
  • Received Date: September 03, 2024
  • Revised Date: February 03, 2025
  • Accepted Date: February 03, 2025
  • Available Online: February 09, 2025
  • The shale reservoir has tight rock, small pore throat, and very low permeability The knowledge of flow mechanism in shale is the key to improving the recovery of shale oil and gas. By conducting low-temperature liquid nitrogen (LN2) treatment experiments on shale cores and experiments of cyclic injection of CO2, the effects of cyclic gas injection at different injection pressures after low-temperature LN2 treatment on the recovery of shale oil, physical properties of cores, and relative permeability of oil and gas were studied, and the changes in the microscopic pore structure before and after the treatment were identified. The experimental results show that after LN2 injection, the shale can generate a thermal stress of 313.5 MPa, inducing the formation of micro-fractures. The volume expansion effect of LN2 vaporization and cyclic injection for CO2 can form a re-pressurization mechanism in the core after the formation of micro-fractures, expanding the induced fractures and improving the permeability. The recovery by CO2 huff and puff is proportional to the injection pressure. The cumulative recovery by the first and third rounds of supercritical CO2 huff and puff are 32.4% and 34.9% higher than those of subcritical CO2 , with an increase of 154.6% and 101.7%, respectively. The number of required huff and puff cycles for high-pressure CO2 injection is reduced, and the produced oil mainly comes from the first two rounds of huff and puff. Compared with that of the initial shale core, after supercritical cyclic CO2 huff and puff, the average pore size increases by 176%, and the maximum relative permeability of oil and gas increase by 1.8 and 2.3 times, respectively. The research results provide a reference for the production increase of shale oil and gas.

  • [1]
    路千里,张航,郭建春,等. 基于相场法的水力裂缝扩展模拟技术现状及展望[J]. 天然气工业,2023,43(3):59–68. doi: 10.3787/j.issn.1000-0976.2023.03.006

    LU Qianli, ZHANG Hang, GUO Jianchun, et al. Status and prospect of hydraulic fracture propagation simulation based on phase field method[J]. Natural Gas Industry, 2023, 43(3): 59–68. doi: 10.3787/j.issn.1000-0976.2023.03.006
    [2]
    TANG Huiying, WANG Shihao, ZHANG Ruihan, et al. Analysis of stress interference among multiple hydraulic fractures using a fully three-dimensional displacement discontinuity method[J]. Journal of Petroleum Science and Engineering, 2019, 179: 378–393. doi: 10.1016/j.petrol.2019.04.050
    [3]
    王小龙,高庆贤,董双福,等. 超低渗致密油藏二氧化碳吞吐合理注入参数确定[J]. 石油钻采工艺,2023,45(3):368–375.

    WANG Xiaolong, GAO Qingxian, DONG Shuangfu, et al. Determination of rational parameters for CO2 huff-n-puff in tight oil reservoirs with ultra-low permeability[J]. Oil Drilling & Production Technology, 2023, 45(3): 368–375.
    [4]
    叶长青,马辉运,蔡道纲,等. 国外页岩气井人工举升增产技术研究现状与进展[J]. 石油钻采工艺,2022,44(3):328–334.

    YE Changqing, MA Huiyun, CAI Daogang, et al. Research status and progress of artificial lifting of shale gas wells abroad[J]. Oil Drilling & Production Technology, 2022, 44(3): 328–334.
    [5]
    李向阳,季汉成,卞腾飞,等. 玛北斜坡百口泉组致密砾岩水力压裂裂缝表征[J]. 新疆石油地质,2023,44(2):178–183.

    LI Xiangyang, JI Hancheng, BIAN Tengfei, et al. Characterization of hydraulic fractures in tight conglomerate reservoirs in Baikouquan Formation, Mabei slope[J]. Xinjiang Petroleum Geology, 2023, 44(2): 178–183.
    [6]
    马东东,罗宇杰,胡大伟,等. 粒径分选性与围压对砂砾岩水力压裂破裂影响机制研究[J]. 岩石力学与工程学报,2020,39(11):2264–2273.

    MA Dongdong, LUO Yujie, HU Dawei, et al. Effects of particle size sorting and confining pressure on hydraulic fracturing mechanism of glutenite rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2264–2273.
    [7]
    李邦国,侯家鵾,雷兆丰,等. 超临界CO2萃取页岩油效果评价及影响因素分析[J]. 石油钻探技术,2024,52(4):94–103.

    LI Bangguo, HOU Jiakun, LEI Zhaofeng, et al. Evaluation of shale oil extraction by supercritical CO2 and analysis of influencing factors[J]. Petroleum Drilling Techniques, 2024, 52(4): 94–103.
    [8]
    汤积仁,张靖,卢义玉,等. 页岩对CO2的绝对吸附量及其影响因素试验研究[J]. 煤炭学报,2020,45(8):2838–2845.

    TANG Jiren, ZHANG Jing, LU Yiyu, et al. Absolute adsorption capacity of shale on CO2 and its influencing factors[J]. Journal of China Coal Society, 2020, 45(8): 2838–2845.
    [9]
    贾连超,刘鹏飞,袁丹,等. 注CO2提高页岩吸附气采收率试验:以鄂尔多斯盆地延长组长7页岩气为例[J]. 大庆石油地质与开发,2021,40(2):153–159.

    JIA Lianchao, LIU Pengfei, YUAN Dan, et al. Experiment of enhancing the recovery of the shale adsorbed gas by CO2 injection: taking Yanchang-Formation Chang-7 shale gas in Ordos Basin as an example[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(2): 153–159.
    [10]
    张佳亮,葛洪魁,张衍君,等. 吉木萨尔页岩油注入介质梯级提采试验评价[J]. 石油钻采工艺,2023,45(2):244–250.

    ZHANG Jialiang, GE Hongkui, ZHANG Yanjun, et al. Experimental evaluation on EOR medium grading of shale in Jimusaer Oilfield[J]. Oil Drilling & Production Technology, 2023, 45(2): 244–250.
    [11]
    GRUNDMANN S R, RODVELT G D, DIALS G A, et al. Cryogenic nitrogen as a hydraulic fracturing fluid in the Devonian shale[R]. SPE 51067, 1998.
    [12]
    吴壮坤,张宏录,池宇璇. 苏北页岩油二氧化碳强压质换技术[J]. 石油钻探技术,2024,52(4):87–93.

    WU Zhuangkun, ZHANG Honglu, CHI Yuxuan. CO2 high pressure quality exchange technology of shale oil in northern Jiangsu Province[J]. Petroleum Drilling Techniques, 2024, 52(4): 87–93.
    [13]
    张衍君,王鲁瑀,刘娅菲,等. 页岩油储层压裂−提采一体化研究进展与面临的挑战[J]. 石油钻探技术,2024,52(1):84–95. doi: 10.11911/syztjs.2024012

    ZHANG Yanjun, WANG Luyu, LIU Yafei, et al. Advances and challenges of integration of fracturing and enhanced oil recovery in shale oil reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(1): 84–95. doi: 10.11911/syztjs.2024012
    [14]
    SIRATOVICH P A, VILLENEUVE M C, COLE J W, et al. Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 265–280. doi: 10.1016/j.ijrmms.2015.09.023
    [15]
    ALQATAHNI N B, CHA Minsu, YAO Bowen, et al. Experimental investigation of cryogenic fracturing of rock specimens under true triaxial confining stresses[R]. SPE 180071, 2016.
    [16]
    KHALIL R, EMADI H. An experimental investigation of cryogenic treatments effects on porosity, permeability, and mechanical properties of Marcellus downhole core samples[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103422. doi: 10.1016/j.jngse.2020.103422
    [17]
    LI Ran, ZHANG Chengcheng, HUANG Zhongwei. Quenching and rewetting of rock in liquid nitrogen: Characterizing heat transfer and surface effects[J]. International Journal of Thermal Sciences, 2020, 148: 106161. doi: 10.1016/j.ijthermalsci.2019.106161
    [18]
    MCDANIEL B W, GRUNDMANN S R, KENDRICK W D, et al. Field applications of cryogenic nitrogen as a hydraulic fracturing fluid[R]. SPE 38623, 1997.
    [19]
    FU Chunkai, LIU Ning. Waterless fluids in hydraulic fracturing: a review[J]. Journal of Natural Gas Science and Engineering, 2019, 67: 214–224. doi: 10.1016/j.jngse.2019.05.001
    [20]
    CHA Minsu, ALQAHTANI N B, YAO Bowen, et al. Cryogenic fracturing of wellbores under true triaxial-confining stresses: experimental investigation[J]. SPE Journal, 2018, 23(4): 1271–1289. doi: 10.2118/180071-PA
    [21]
    JIANG Long, CHENG Yuanfang, HAN Zhongying, et al. Experimental investigation on pore characteristics and carrying capacity of Longmaxi shale under liquid nitrogen freezing and thawing[R]. SPE 191111, 2018.
    [22]
    ALTAWATI F, EMADI H, PATHAK S. Improving oil recovery of Eagle Ford shale samples using cryogenic and cyclic gas injection methods: an experimental study[J]. Fuel, 2021, 302: 121170. doi: 10.1016/j.fuel.2021.121170
    [23]
    ENAYATPOUR S, PATZEK T. Thermal shock in reservoir rock enhances the hydraulic fracturing of gas shales[R]. URTEC 1620617, 2013.
    [24]
    芦迪,张敬茹,张毅,等. 注CO2提高页岩气采收率试验研究[J]. 大连理工大学学报,2021,61(5):464–470. doi: 10.7511/dllgxb202105004

    LU Di, ZHANG Jingru, ZHANG Yi, et al. Experimental study of enhancing shale gas recovery by CO2 injection[J]. Journal of Dalian University of Technology, 2021, 61(5): 464–470. doi: 10.7511/dllgxb202105004
    [25]
    ZHOU Junping, TIAN Shifeng, ZHOU Lei, et al. Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale[J]. Energy, 2020, 191: 116574. doi: 10.1016/j.energy.2019.116574
    [26]
    孟昆,王胜建,薛宗安,等. 利用核磁共振资料定量评价页岩孔隙结构[J]. 波谱学杂志,2021,38(2):215–226. doi: 10.11938/cjmr20202856

    MENG Kun, WANG Shengjian, XUE Zongan, et al. Quantitative evaluation of shale pore structure using nuclear magnetic resonance data[J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 215–226. doi: 10.11938/cjmr20202856
    [27]
    郎东江,伦增珉,吕成远,等. 页岩油注二氧化碳提高采收率影响因素核磁共振试验[J]. 石油勘探与开发,2021,48(3):603–612. doi: 10.11698/PED.2021.03.15

    LANG Dongjiang, LUN Zengmin, LYU Chengyuan, et al. Nuclear magnetic resonance experimental study of CO2 injection to enhance shale oil recovery[J]. Petroleum Exploration and Development, 2021, 48(3): 603–612. doi: 10.11698/PED.2021.03.15
  • Related Articles

    [1]GUO Jiangfeng, XU Chenyu, XIE Ranhong, WANG Shuai, LIU Jilong, WANG Meng. Study on the NMR Response Mechanism of Micro-Fractured Tight Sandstones[J]. Petroleum Drilling Techniques, 2022, 50(4): 121-128. DOI: 10.11911/syztjs.2022091
    [2]LI Fengxia, WANG Haibo, ZHOU Tong, HAN Ling. The Influence of Fractures in Shale Oil Reservoirs on CO2 Huff and Puff and Its Pore Production Characteristics[J]. Petroleum Drilling Techniques, 2022, 50(2): 38-44. DOI: 10.11911/syztjs.2022006
    [3]DUAN Youzhi, HOU Qian, LIU Jinchun, YUE Hui, AI Shuang, XIN Weidong. Study on the Influencing Factors of the Properties of Porous Shape Memory Polymer for Well Completion[J]. Petroleum Drilling Techniques, 2021, 49(2): 67-71. DOI: 10.11911/syztjs.2020100
    [4]LI Erdang, HAN Zuowei, GAO Xiangrui, MA Mingyu, QIU Junchao. Research on the Microscopic Pore Producing Characteristics of Tight Reservoirs Displaced by Different Gas Injection Media[J]. Petroleum Drilling Techniques, 2020, 48(5): 85-91. DOI: 10.11911/syztjs.2020078
    [5]WANG Yi. A Method for Accurate Calculation of Pore Pressure in Fractured Formations of Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(3): 29-34. DOI: 10.11911/syztjs.2020056
    [6]HOU Jie. A New Method of Plugging Micro/Nano Meter Cracks in Hard, Brittle Shale[J]. Petroleum Drilling Techniques, 2017, 45(3): 32-37. DOI: 10.11911/syztjs.201703006
    [7]YU Lei, ZHANG Jinghui, LIU Baofeng, SUN Ronghua, JI Yibing, LIU Chuanqing. Study and Application of Borehole Stabilization Technology in Shale Strata Containing Micro-Fractures[J]. Petroleum Drilling Techniques, 2017, 45(3): 27-31. DOI: 10.11911/syztjs.201703005
    [8]XU Xinli. Experimental Study on Micro-Pore Structure and Seepage Characteristics of Ultra-Low Permeability Reservoirs in the Dongfenggang Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(2): 96-100. DOI: 10.11911/syztjs.201702016
    [9]Shi Bingzhong, Hu Xuhui, Gao Shuyang, Xu Jiang, Lin Yongxue. Visualization Sealing Simulation Test and Evaluation of Hard Brittle Shale Microfracture[J]. Petroleum Drilling Techniques, 2014, 42(3): 32-37. DOI: 10.3969/j.issn.1001-0890.2014.03.007
    [10]An Fengjun, Zhao Anjun, Zhou Huizhi, Duan Guifu. Effect Analysis of Secondary Sand Fracturing Using Four-Dimensional Seismic Imaging of Micro-Fractures[J]. Petroleum Drilling Techniques, 2013, 41(5): 98-101. DOI: 10.3969/j.issn.1001-0890.2013.05.019
  • Cited by

    Periodical cited type(8)

    1. 赵显威. 直井段偏移对后期定向钻井作业的影响探讨. 西部探矿工程. 2020(10): 77-78 .
    2. 方勇. 定向钻井提速技术分析及应用. 中国石油和化工标准与质量. 2019(01): 206-207 .
    3. 路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 . 本站查看
    4. 李超,窦亮彬,李振兴,康恺,周鑫,韩田兴. 青西油田深井钻井提速技术与应用. 断块油气田. 2018(03): 376-380 .
    5. 高军,吴娜,董龙. 青西油田深井配套工艺技术研究与应用. 化工管理. 2018(23): 98 .
    6. 席博. 分析定向钻井技术常见问题及处理措施. 中国石油和化工标准与质量. 2017(06): 114-115 .
    7. 程天辉,王维韬,王树超. 塔里木泛哈拉哈塘地区扭力冲击钻井技术. 石油钻采工艺. 2017(01): 53-56 .
    8. 张瑜. 定向钻井技术常见问题与对策. 当代化工研究. 2016(02): 12-13 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (43) PDF downloads (13) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return