Citation: | WANG Xiaojun, PING Shanhai, FU Yunbo, et al. Development and application of high temperature resistance and anti-sloughing water-based drilling fluid system [J]. Petroleum Drilling Techniques, 2025, 53(2):62−68. DOI: 10.11911/syztjs.2025009 |
The anti-sloughing and high temperature-resistant properties of conventional water-based drilling fluids fail to meet the needs of exploration and development of complicated deep wells. To address this issue, surface hydration inhibitors and nano-scale plugging agents were developed. Through the optimization of other treatment agents and ratio optimization, a high temperature-resistant and anti-sloughing water-based drilling fluid system with a density of 2.00 kg/L was formed. The laboratory performance evaluation shows that the temperature resistance of the drilling fluid system reached 220 ℃; the density difference between the upper and lower parts is only 0.02 kg/L after standing for 96 h; the resistance to cutting contaminant is more than 3.0%, and the resistance to calcium chloride pollution is more than 0.6%. Lubrication and inhibition properties are only inferior to oil-based drilling fluid, and the plugging rate of tight sandstone is 85.6%. Field application results show that the drilling fluid system still maintains great borehole purification capacity in high-temperature deep wells, excellent settlement stability, outstanding wellbore stability, and favorable lubrication drag reduction performance. The high temperature-resistant and anti-sloughing water-based drilling fluid system provides technical support for the drilling and completion of deep and ultra-deep wells in complex formations.
[1] |
李建成,关键,王晓军,等. 苏53区块全油基钻井液的研究与应用[J]. 石油钻探技术,2014,42(5):62–67.
LI Jiancheng, GUAN Jian, WANG Xiaojun, et al. Research and application of oil-based drilling fluid technology in Block SU 53[J]. Petroleum Drilling Techniques, 2014, 42(5): 62–67.
|
[2] |
高书阳. 苏北陆相页岩油高性能水基钻井液技术[J]. 石油钻探技术,2024,52(4):51–56. doi: 10.11911/syztjs.2024061
GAO Shuyang. Technique of high-performance water-based drilling fluid for continental shale oil in Subei Basin[J]. Petroleum Drilling Techniques, 2024, 52(4): 51–56. doi: 10.11911/syztjs.2024061
|
[3] |
柳贡慧,查春青,陈添,等. 深层超深层油气安全高效开发若干关键问题与新型解决方案[J]. 石油钻探技术,2024,52(2):24–30. doi: 10.11911/syztjs.2024002
LIU Gonghui, ZHA Chunqing, CHEN Tian, et al. Several key issues in safe and efficient development of deep and ultra-deep oil and gas and corresponding new solutions[J]. Petroleum Drilling Techniques, 2024, 52(2): 24–30. doi: 10.11911/syztjs.2024002
|
[4] |
李战奎,吴立伟,郭明宇,等. 渤中凹陷深层高压井地质工程一体化技术研究与应用[J]. 石油钻探技术,2024,52(2):194–201. doi: 10.11911/syztjs.2024031
LI Zhankui, WU Liwei, GUO Mingyu, et al. Research and application of integrated geological engineering technology for deep high-pressure wells in the Bozhong Sag[J]. Petroleum Drilling Techniques, 2024, 52(2): 194–201. doi: 10.11911/syztjs.2024031
|
[5] |
祝效华,李瑞,刘伟吉,等. 深层页岩气水平井高效破岩提速技术发展现状[J]. 西南石油大学学报(自然科学版),2023,45(4):1–18.
ZHU Xiaohua, LI Rui, LIU Weiji, et al. Development status of high-efficiency rock-breaking and speed-increasing technologies for deep shale gas horizontal wells[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(4): 1–18.
|
[6] |
李科,赵怀珍,李秀灵,等. 抗高温高性能水基钻井液及其在顺北801X井的应用[J]. 钻井液与完井液,2022,39(3):279–284. doi: 10.12358/j.issn.1001-5620.2022.03.003
LI Ke, ZHAO Huaizhen, LI Xiuling, et al. The development and application of high-temperature and high-performance water base drilling fluid on the Well Shunbei 801X[J]. Drilling Fluid & Completion Fluid, 2022, 39(3): 279–284. doi: 10.12358/j.issn.1001-5620.2022.03.003
|
[7] |
白杨,翟玉芬,邱小江,等. 基于蒙脱石修饰的深层页岩封堵剂制备及性能研究[J]. 石油钻探技术,2024,52(2):146–152. doi: 10.11911/syztjs.2024035
BAI Yang, ZHAI Yufen, QIU Xiaojiang, et al. Preparation and performance study of plugging agents for deep shale based on montmorillonite modification[J]. Petroleum Drilling Techniques, 2024, 52(2): 146–152. doi: 10.11911/syztjs.2024035
|
[8] |
王中华. 国内钻井液技术现状与发展建议[J]. 石油钻探技术,2023,51(4):114–123. doi: 10.11911/syztjs.2023028
WANG Zhonghua. Current situation and development suggestions for drilling fluid technologies in China[J]. Petroleum Drilling Techniques, 2023, 51(4): 114–123. doi: 10.11911/syztjs.2023028
|
[9] |
韩正波,刘厚彬,张靖涛,等. 深层脆性页岩力学性能及井壁稳定性研究[J]. 特种油气藏,2020,27(5):167–174. doi: 10.3969/j.issn.1006-6535.2020.05.026
HAN Zhengbo, LIU Houbin, ZHANG Jingtao, et al. Research on the mechanical properties and borehole stability of deep brittle shale[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 167–174. doi: 10.3969/j.issn.1006-6535.2020.05.026
|
[10] |
邢希金,王涛,刘伟,等. 超深大位移井井壁稳定及储层保护技术与应用[J]. 中国海上油气,2023,35(5):154–163.
XING Xijin, WANG Tao, LIU Wei, et al. Research and application of drilling risk prevention and control measures in ultra-deep extended-reach wells[J]. China Offshore Oil and Gas, 2023, 35(5): 154–163.
|
[11] |
王晓军,蒋官澄,关键,等. 一种抗高温插层吸附抑制剂:CN201810566560.1[P]. 2018-11-06.
WANG Xiaojun, JIANG Guancheng, GUAN Jian, et al. An anti-high temperature intercalation adsorption inhibitor: CN201810566560.1[P]. 2018-11-06.
|
[12] |
李凡,李大奇,金军斌,等. 顺北油气田辉绿岩地层井壁稳定钻井液技术[J]. 石油钻探技术,2023,51(2):61–67. doi: 10.11911/syztjs.2022041
LI Fan, LI Daqi, JIN Junbin, et al. Drilling fluid technology for wellbore stability of the diabase formation in Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 61–67. doi: 10.11911/syztjs.2022041
|
[13] |
徐哲,孙金声,刘敬平,等. 柔性微球封堵剂的封堵性能及机理研究[J]. 断块油气田,2024,31(6):1105–1113.
XU Zhe, SUN Jinsheng, LIU Jingping, et al. Research on plugging performance and mechanism of flexible microsphere plugging agent[J]. Fault-Block Oil & Gas Field, 2024, 31(6): 1105–1113.
|
[14] |
代锋,易刚,张婧,等. 页岩地层纳微米封堵剂封堵性评价方法[J]. 钻井液与完井液,2023,40(6):733–741. doi: 10.12358/j.issn.1001-5620.2023.06.006
DAI Feng, YI Gang, ZHANG Jing, et al. Study on methods of evaluating plugging capacity of nanometer and micrometer sized plugging agents for shale formations[J]. Drilling Fluid & Completion Fluid, 2023, 40(6): 733–741. doi: 10.12358/j.issn.1001-5620.2023.06.006
|
[15] |
罗鸣,高德利,黄洪林,等. 钻井液对页岩力学特性及井壁稳定性的影响[J]. 石油钻采工艺,2022,44(6):693–700.
LUO Ming, GAO Deli, HUANG Honglin, et al. Effects of drilling fluids on shale mechanical properties and wellbore stability[J]. Oil Drilling & Production Technology, 2022, 44(6): 693–700.
|
1. |
陶振宇,樊洪海,罗胜,刘玉含,邓嵩,叶宇光. 基于井筒-地层定压实验的重力置换窗口研究. 科学技术与工程. 2024(06): 2330-2338 .
![]() | |
2. |
赵鹏,马永乾,樊洪海,段光辉,陶振宇. 油基钻井液与地层流体重力置换实验研究. 内蒙古石油化工. 2024(08): 96-102 .
![]() | |
3. |
唐贵,邓虎,舒梅. 地层—井筒耦合条件下的压力控制实验装置研究. 钻采工艺. 2022(04): 44-49 .
![]() | |
4. |
霍宏博,李金蔓,张磊,岳明,刘海龙. 海洋窄压力窗口钻井技术. 石油工业技术监督. 2021(04): 40-44 .
![]() | |
5. |
乐宏,吴鹏程,梁婕,钟成旭,张震,李郑涛,李红涛. 裂缝发育页岩地层水平井钻井气液重力置换规律. 天然气工业. 2021(12): 90-98 .
![]() | |
6. |
王怡. 页岩气藏裂缝区地层孔隙压力准确求取方法. 石油钻探技术. 2020(03): 29-34 .
![]() | |
7. |
刘衍前. 涪陵页岩气田加密井钻井关键技术. 石油钻探技术. 2020(05): 21-26 .
![]() | |
8. |
周朝,吴晓东,张同义,赵旭. 排液采气涡流工具结构参数优化实验研究. 石油钻探技术. 2018(06): 105-110 .
![]() |