WANG Xiaojun, PING Shanhai, FU Yunbo, et al. Development and application of high temperature resistance and anti-sloughing water-based drilling fluid system [J]. Petroleum Drilling Techniques, 2025, 53(2):62−68. DOI: 10.11911/syztjs.2025009
Citation: WANG Xiaojun, PING Shanhai, FU Yunbo, et al. Development and application of high temperature resistance and anti-sloughing water-based drilling fluid system [J]. Petroleum Drilling Techniques, 2025, 53(2):62−68. DOI: 10.11911/syztjs.2025009

Development and Application of High Temperature Resistance and Anti-Sloughing Water-Based Drilling Fluid System

More Information
  • Received Date: September 08, 2023
  • Revised Date: January 19, 2025
  • Available Online: February 11, 2025
  • The anti-sloughing and high temperature-resistant properties of conventional water-based drilling fluids fail to meet the needs of exploration and development of complicated deep wells. To address this issue, surface hydration inhibitors and nano-scale plugging agents were developed. Through the optimization of other treatment agents and ratio optimization, a high temperature-resistant and anti-sloughing water-based drilling fluid system with a density of 2.00 kg/L was formed. The laboratory performance evaluation shows that the temperature resistance of the drilling fluid system reached 220 ℃; the density difference between the upper and lower parts is only 0.02 kg/L after standing for 96 h; the resistance to cutting contaminant is more than 3.0%, and the resistance to calcium chloride pollution is more than 0.6%. Lubrication and inhibition properties are only inferior to oil-based drilling fluid, and the plugging rate of tight sandstone is 85.6%. Field application results show that the drilling fluid system still maintains great borehole purification capacity in high-temperature deep wells, excellent settlement stability, outstanding wellbore stability, and favorable lubrication drag reduction performance. The high temperature-resistant and anti-sloughing water-based drilling fluid system provides technical support for the drilling and completion of deep and ultra-deep wells in complex formations.

  • [1]
    李建成,关键,王晓军,等. 苏53区块全油基钻井液的研究与应用[J]. 石油钻探技术,2014,42(5):62–67.

    LI Jiancheng, GUAN Jian, WANG Xiaojun, et al. Research and application of oil-based drilling fluid technology in Block SU 53[J]. Petroleum Drilling Techniques, 2014, 42(5): 62–67.
    [2]
    高书阳. 苏北陆相页岩油高性能水基钻井液技术[J]. 石油钻探技术,2024,52(4):51–56. doi: 10.11911/syztjs.2024061

    GAO Shuyang. Technique of high-performance water-based drilling fluid for continental shale oil in Subei Basin[J]. Petroleum Drilling Techniques, 2024, 52(4): 51–56. doi: 10.11911/syztjs.2024061
    [3]
    柳贡慧,查春青,陈添,等. 深层超深层油气安全高效开发若干关键问题与新型解决方案[J]. 石油钻探技术,2024,52(2):24–30. doi: 10.11911/syztjs.2024002

    LIU Gonghui, ZHA Chunqing, CHEN Tian, et al. Several key issues in safe and efficient development of deep and ultra-deep oil and gas and corresponding new solutions[J]. Petroleum Drilling Techniques, 2024, 52(2): 24–30. doi: 10.11911/syztjs.2024002
    [4]
    李战奎,吴立伟,郭明宇,等. 渤中凹陷深层高压井地质工程一体化技术研究与应用[J]. 石油钻探技术,2024,52(2):194–201. doi: 10.11911/syztjs.2024031

    LI Zhankui, WU Liwei, GUO Mingyu, et al. Research and application of integrated geological engineering technology for deep high-pressure wells in the Bozhong Sag[J]. Petroleum Drilling Techniques, 2024, 52(2): 194–201. doi: 10.11911/syztjs.2024031
    [5]
    祝效华,李瑞,刘伟吉,等. 深层页岩气水平井高效破岩提速技术发展现状[J]. 西南石油大学学报(自然科学版),2023,45(4):1–18.

    ZHU Xiaohua, LI Rui, LIU Weiji, et al. Development status of high-efficiency rock-breaking and speed-increasing technologies for deep shale gas horizontal wells[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(4): 1–18.
    [6]
    李科,赵怀珍,李秀灵,等. 抗高温高性能水基钻井液及其在顺北801X井的应用[J]. 钻井液与完井液,2022,39(3):279–284. doi: 10.12358/j.issn.1001-5620.2022.03.003

    LI Ke, ZHAO Huaizhen, LI Xiuling, et al. The development and application of high-temperature and high-performance water base drilling fluid on the Well Shunbei 801X[J]. Drilling Fluid & Completion Fluid, 2022, 39(3): 279–284. doi: 10.12358/j.issn.1001-5620.2022.03.003
    [7]
    白杨,翟玉芬,邱小江,等. 基于蒙脱石修饰的深层页岩封堵剂制备及性能研究[J]. 石油钻探技术,2024,52(2):146–152. doi: 10.11911/syztjs.2024035

    BAI Yang, ZHAI Yufen, QIU Xiaojiang, et al. Preparation and performance study of plugging agents for deep shale based on montmorillonite modification[J]. Petroleum Drilling Techniques, 2024, 52(2): 146–152. doi: 10.11911/syztjs.2024035
    [8]
    王中华. 国内钻井液技术现状与发展建议[J]. 石油钻探技术,2023,51(4):114–123. doi: 10.11911/syztjs.2023028

    WANG Zhonghua. Current situation and development suggestions for drilling fluid technologies in China[J]. Petroleum Drilling Techniques, 2023, 51(4): 114–123. doi: 10.11911/syztjs.2023028
    [9]
    韩正波,刘厚彬,张靖涛,等. 深层脆性页岩力学性能及井壁稳定性研究[J]. 特种油气藏,2020,27(5):167–174. doi: 10.3969/j.issn.1006-6535.2020.05.026

    HAN Zhengbo, LIU Houbin, ZHANG Jingtao, et al. Research on the mechanical properties and borehole stability of deep brittle shale[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 167–174. doi: 10.3969/j.issn.1006-6535.2020.05.026
    [10]
    邢希金,王涛,刘伟,等. 超深大位移井井壁稳定及储层保护技术与应用[J]. 中国海上油气,2023,35(5):154–163.

    XING Xijin, WANG Tao, LIU Wei, et al. Research and application of drilling risk prevention and control measures in ultra-deep extended-reach wells[J]. China Offshore Oil and Gas, 2023, 35(5): 154–163.
    [11]
    王晓军,蒋官澄,关键,等. 一种抗高温插层吸附抑制剂:CN201810566560.1[P]. 2018-11-06.

    WANG Xiaojun, JIANG Guancheng, GUAN Jian, et al. An anti-high temperature intercalation adsorption inhibitor: CN201810566560.1[P]. 2018-11-06.
    [12]
    李凡,李大奇,金军斌,等. 顺北油气田辉绿岩地层井壁稳定钻井液技术[J]. 石油钻探技术,2023,51(2):61–67. doi: 10.11911/syztjs.2022041

    LI Fan, LI Daqi, JIN Junbin, et al. Drilling fluid technology for wellbore stability of the diabase formation in Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 61–67. doi: 10.11911/syztjs.2022041
    [13]
    徐哲,孙金声,刘敬平,等. 柔性微球封堵剂的封堵性能及机理研究[J]. 断块油气田,2024,31(6):1105–1113.

    XU Zhe, SUN Jinsheng, LIU Jingping, et al. Research on plugging performance and mechanism of flexible microsphere plugging agent[J]. Fault-Block Oil & Gas Field, 2024, 31(6): 1105–1113.
    [14]
    代锋,易刚,张婧,等. 页岩地层纳微米封堵剂封堵性评价方法[J]. 钻井液与完井液,2023,40(6):733–741. doi: 10.12358/j.issn.1001-5620.2023.06.006

    DAI Feng, YI Gang, ZHANG Jing, et al. Study on methods of evaluating plugging capacity of nanometer and micrometer sized plugging agents for shale formations[J]. Drilling Fluid & Completion Fluid, 2023, 40(6): 733–741. doi: 10.12358/j.issn.1001-5620.2023.06.006
    [15]
    罗鸣,高德利,黄洪林,等. 钻井液对页岩力学特性及井壁稳定性的影响[J]. 石油钻采工艺,2022,44(6):693–700.

    LUO Ming, GAO Deli, HUANG Honglin, et al. Effects of drilling fluids on shale mechanical properties and wellbore stability[J]. Oil Drilling & Production Technology, 2022, 44(6): 693–700.
  • Related Articles

    [1]HUANG Zhe, ZHANG Weiqiang, WU Zhonghua. Status and Development Trend of Digital Bit Technologies[J]. Petroleum Drilling Techniques, 2024, 52(5): 124-129. DOI: 10.11911/syztjs.2024086
    [2]WANG Zhonghua. Current Situation and Development Suggestions for Drilling Fluid Technologies in China[J]. Petroleum Drilling Techniques, 2023, 51(4): 114-123. DOI: 10.11911/syztjs.2023028
    [3]JIANG Tingxue, WANG Haitao. The Current Status and Development Suggestions for Sinopec’s Staged Fracturing Technologies of Horizontal Shale Oil Wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 14-21. DOI: 10.11911/syztjs.2021071
    [4]ZHANG Jinhong. Present Status and Development Prospects of Sinopec Shale Oil Engineering Technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8-13. DOI: 10.11911/syztjs.2021072
    [5]CHEN Zuo, LIU Honglei, LI Yingjie, SHEN Ziqi, XU Guoqing. The Current Status and Development Suggestions for Shale Oil Reservoir Stimulation at Home and Abroad [J]. Petroleum Drilling Techniques, 2021, 49(4): 1-7. DOI: 10.11911/syztjs.2021081
    [6]GENG Lidong. Application Status and Development Suggestions of Big Data Technology in Petroleum Engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72-78. DOI: 10.11911/syztjs.2020134
    [7]SONG Xianzhi, XU Fuqiang, SONG Guofeng. Technical Status and Development Suggestions in Exploiting Geothermal Energy from Abandoned Wells[J]. Petroleum Drilling Techniques, 2020, 48(6): 1-7. DOI: 10.11911/syztjs.2020120
    [8]YUAN Guangjie, ZHANG Hong, JIN Gentai, XIA Yan. Current Status and Development Suggestions in Drilling and Completion Technology of Underground Gas Storage in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 1-7. DOI: 10.11911/syztjs.2020041
    [9]LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent Drilling Technology Research Status and Development Trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1-8. DOI: 10.11911/syztjs.2020001
    [10]CHEN Zuo, XU Guoqing, JIANG Manqi. The Current Status and Development Recommendations for Dry Hot Rock Fracturing Technologies at Home and Abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1-8. DOI: 10.11911/syztjs.2019110
  • Cited by

    Periodical cited type(8)

    1. 陶振宇,樊洪海,罗胜,刘玉含,邓嵩,叶宇光. 基于井筒-地层定压实验的重力置换窗口研究. 科学技术与工程. 2024(06): 2330-2338 .
    2. 赵鹏,马永乾,樊洪海,段光辉,陶振宇. 油基钻井液与地层流体重力置换实验研究. 内蒙古石油化工. 2024(08): 96-102 .
    3. 唐贵,邓虎,舒梅. 地层—井筒耦合条件下的压力控制实验装置研究. 钻采工艺. 2022(04): 44-49 .
    4. 霍宏博,李金蔓,张磊,岳明,刘海龙. 海洋窄压力窗口钻井技术. 石油工业技术监督. 2021(04): 40-44 .
    5. 乐宏,吴鹏程,梁婕,钟成旭,张震,李郑涛,李红涛. 裂缝发育页岩地层水平井钻井气液重力置换规律. 天然气工业. 2021(12): 90-98 .
    6. 王怡. 页岩气藏裂缝区地层孔隙压力准确求取方法. 石油钻探技术. 2020(03): 29-34 . 本站查看
    7. 刘衍前. 涪陵页岩气田加密井钻井关键技术. 石油钻探技术. 2020(05): 21-26 . 本站查看
    8. 周朝,吴晓东,张同义,赵旭. 排液采气涡流工具结构参数优化实验研究. 石油钻探技术. 2018(06): 105-110 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (131) PDF downloads (48) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return