Citation: | XU Chaoyang, LEI Cheng, JIN Bo, et al. A managed pressure balance method for wellbore pressure fluctuation during downlink communication while drilling [J]. Petroleum Drilling Techniques, 2025, 53(1):60−66. DOI: 10.11911/syztjs.2025005 |
The wellbore pressure fluctuation caused by negative pulse downlink communication in rotary steerable drilling is unfavorable to well control safety. Therefore, based on the operating principle and characteristics of the negative pulse downlink communication system, a managed pressure balance method with standpipe pressure as the reference and a wellbore transient flow model were established. The flow law of drilling fluid in the wellbore during negative pulse downlink communication was analyzed, and the effect of the managed pressure balance method based on standpipe pressure was verified. The numerical simulation results show that the signal propagates from the standpipe to the wellhead during the negative pulse downlink communication, and the flow rate fluctuation is significantly distorted; the pressure fluctuation is significantly reduced, both of which have time delay effects. The variation pattern of standpipe pressure and bottom hole pressure is basically consistent, proving that standpipe pressure can be used as reference data for regulating back pressure. The negative fluctuation of bottom hole pressure is decreased by 80.9% during downlink communication under managed pressure, and the fluctuation pattern of the bottom hole flow rate is basically consistent with that under constant wellhead back pressure. The research results indicate that this managed pressure balance method with standpipe pressure as the reference can effectively suppress the fluctuation of bottom hole pressure during negative pulse downlink communication and maintain stable bottom hole pressure, and it does not interfere with the flow signal of the negative pulse downlink communication, providing theoretical guidance for on-site operations.
[1] |
周英操,崔猛,查永进. 控压钻井技术探讨与展望[J]. 石油钻探技术,2008,36(4):1–4. doi: 10.3969/j.issn.1001-0890.2008.04.001
ZHOU Yingcao, CUI Meng, ZHA Yongjin. Discussion and prospect of managed pressure drilling technology[J]. Petroleum Drilling Techniques, 2008, 36(4): 1–4. doi: 10.3969/j.issn.1001-0890.2008.04.001
|
[2] |
周英操,杨雄文,方世良,等. PCDS-Ⅰ精细控压钻井系统研制与现场试验[J]. 石油钻探技术,2011,39(4):7–12. doi: 10.3969/j.issn.1001-0890.2011.04.002
ZHOU Yingcao, YANG Xiongwen, FANG Shiliang, et al. Development and field test of PCDS-Ⅰ precise managed pressure drilling system[J]. Petroleum Drilling Techniques, 2011, 39(4): 7–12. doi: 10.3969/j.issn.1001-0890.2011.04.002
|
[3] |
韩烈祥. CQMPD精细控压钻井技术应用与思考[J]. 石油钻采工艺,2018,40(5):559–562.
HAN Liexiang. Application and thinking of CQMPD fine pressure controlling drilling technology[J]. Oil Drilling & Production Technology, 2018, 40(5): 559–562.
|
[4] |
黄熠,杨进,施山山,等. 控压钻井技术在海上超高温高压井中的应用[J]. 石油钻采工艺,2018,40(6):699–705.
HUANG Yi, YANG Jin, SHI Shanshan, et al. Applications of MPD technology in offshore ultra-HTHP wells[J]. Oil Drilling & Production Technology, 2018, 40(6): 699–705.
|
[5] |
刘伟,付加胜,郭庆丰,等. 智能控压钻井关键技术研究进展与展望[J]. 石油钻探技术,2024,52(5):42–50.
LIU Wei, FU Jiasheng, GUO Qingfeng, et al. Research progress and prospects of key technologies for intelligent managed pressure drilling[J]. Petroleum Drilling Techniques, 2024, 52(5): 42–50.
|
[6] |
刘彪,潘丽娟,王沫. 顺北油气田二区断控体油气藏井身结构设计及配套技术[J]. 断块油气田,2023,30(4):692–697.
LIU Biao, PAN Lijuan, WANG Mo. Well structure design and supporting technology of fault-controlled reservoir of No.2 Block in Shunbei oil- gas field [J]. Fault-Block Oil & Gas Field, 2023, 30(4): 692–697.
|
[7] |
田野,王成龙,柳亚亚,等. 深水钻井中控压响应时间及其影响因素分析[J]. 石油机械,2023,51(4):61–67.
TIAN Ye, WANG Chenglong, LIU Yaya, et al. Analysis on managed pressure response time and its influential factors in deepwater drilling[[J]. China Petroleum Machinery, 2023, 51(4): 61–67.
|
[8] |
张绍槐. 现代导向钻井技术的新进展及发展方向[J]. 石油学报,2003,24(3):82–85. doi: 10.3321/j.issn:0253-2697.2003.03.018
ZHANG Shaohuai. New progress and development direction of modern steering drilling techniques[J]. Acta Petrolei Sinica, 2003, 24(3): 82–85. doi: 10.3321/j.issn:0253-2697.2003.03.018
|
[9] |
刘建华,佀洁茹,耿艳峰,等. 动态指向式旋转导向钻井工具测控系统设计与性能分析[J]. 石油钻探技术,2018,46(6):59–64.
LIU Jianhua, SI Jieru, GENG Yanfeng, et al. Design and performance analysis of the measurement and control systems of the dynamic point-the-bit rotary steerable drilling tool[J]. Petroleum Drilling Techniques, 2018, 46(6): 59–64.
|
[10] |
王学明. Power Drive Xceed旋转导向钻井系统在澳大利亚Puffin-12井的应用[J]. 石油钻探技术,2010,38(5):90–94.
WANG Xueming. The application of power drive Xceed rotary steerable drilling system in well Puffin-12 of Australia[J]. Petroleum Drilling Techniques, 2010, 38(5): 90–94.
|
[11] |
秦永和. 滑动导向与旋转导向钻井技术进展及发展对策[J]. 石油钻探技术,2024,52(6):1–9.
QIN Yonghe. Progress and development strategies of sliding and rotary steerable drilling technologies [J]. Petroleum Drilling Techniques, 2024, 52(6): 1–9.
|
[12] |
VIRALLY S J, REED C P, THOMAS J A, et al. Automatic downlink system: US 7380616 B2[P]. 2008−06−03.
|
[13] |
FINKE M D, WARREN D R II, SUN C, et al. Downlink telemetry system: US 6920085 B2[P]. 2005−07−19.
|
[14] |
KRUEGER S, KELCH T, TREVIRANUS J, et al. Method and apparatus for downlink communication using dynamic threshold values for detecting transmitted signals: US 7983113 B2[P]. 2011−07−19.
|
[15] |
尚海燕,周静,付鑫生. 泥浆液脉宽调制方法实现下行通道[J]. 石油仪器,2003,17(1):10–12.
SHANG Haiyan, ZHOU Jing, FU Xinsheng. Downlink realized by the mud-pulse width modulation[J]. Petroleum Instruments, 2003, 17(1): 10–12.
|
[16] |
汤楠,霍爱清,汪跃龙,等. 旋转导向钻井系统下行通讯接收功能的开发[J]. 石油学报,2010,31(1):157–160. doi: 10.7623/syxb201001030
TANG Nan, HUO Aiqing, WANG Yuelong, et al. Development of downward communication receiving function in rotary steerable drilling system[J]. Acta Petrolei Sinica, 2010, 31(1): 157–160. doi: 10.7623/syxb201001030
|
[17] |
刘景超,党瑞荣,马认琦. 导向钻井命令下传的实现方法及参数分析[J]. 电气应用,2016,35(5):38–41.
LIU Jingchao, DANG Ruirong, MA Renqi. Implementation method and parameter analysis of downward transmission of steerable drilling command[J]. Electrotechnical Application, 2016, 35(5): 38–41.
|
[18] |
左星,万昕,苏立飞. 精细控压钻井技术在四川盆地安岳气田震旦系灯影组气藏开发中的应用[J]. 天然气勘探与开发,2017,40(4):105–109.
ZUO Xing, WAN Xin, SU Lifei. Application of precise managed pressure drilling technology in Sinian Dengying Formation in Anyue Gas Field, the Sichuan Basin[J]. Natural Gas Exploration and Development, 2017, 40(4): 105–109.
|
[19] |
左星,杨玻,海显贵. 精细控压钻井技术在磨溪−高石梯海相地层应用可行性分析[J]. 钻采工艺,2015,38(4):15–17. doi: 10.3969/J.ISSN.1006-768X.2015.04.04
ZUO Xing, YANG Bo, HAI Xiangui. Feasibility analysis of precise managed pressure drilling technology in Moxi–Gaoshiti Formation[J]. Drilling & Production Technology, 2015, 38(4): 15–17. doi: 10.3969/J.ISSN.1006-768X.2015.04.04
|
[20] |
周英操,刘伟. PCDS精细控压钻井技术新进展[J]. 石油钻探技术,2019,47(3):68–74. doi: 10.11911/syztjs.2019071
ZHOU Yingcao, LIU Wei. New progress on PCDS precise pressure management drilling technology[J]. Petroleum Drilling Techniques, 2019, 47(3): 68–74. doi: 10.11911/syztjs.2019071
|
[21] |
霍爱清,戴晨. 导向钻井下行通讯地面监控系统设计[J]. 西安石油大学学报(自然科学版),2013,28(4):73–77. doi: 10.3969/j.issn.1673-064X.2013.04.014
HUO Aiqing, DAI Chen. Design of steering drilling downward communication ground monitoring system[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2013, 28(4): 73–77. doi: 10.3969/j.issn.1673-064X.2013.04.014
|
[22] |
刘庆龙. 旋转导向钻井系统下行通讯技术研究[D]. 青岛:中国石油大学(华东),2017.
LIU Qinglong. Study on downlink system technology for rotary steering drilling system[D]. Qingdao: China University of Petroleum(East China), 2017.
|
[23] |
李旭,宋少博,高立军,等. 贝克休斯AutoTrak旋转导向指令成功率与涡轮转数配比研究[J]. 西部探矿工程,2022,34(9):90–91. doi: 10.3969/j.issn.1004-5716.2022.09.032
LI Xu, SONG Shaobo, GAO Lijun, et al. Research on the ratio between the success rate of Baker Hughes AutoTrak rotation steerable command and the number of turbine revolutions[J]. West-China Exploration Engineering, 2022, 34(9): 90–91. doi: 10.3969/j.issn.1004-5716.2022.09.032
|
[24] |
徐朝阳,孟英峰,魏纳,等. 气侵过程井筒压力演变规律实验和模型[J]. 石油学报,2015,36(1):120–126. doi: 10.7623/syxb201501015
XU Chaoyang, MENG Yingfeng, WEI Na, et al. Experimental simulation and numerical modeling of dynamic variations in wellbore pressure during gas-kicks[J]. Acta Petrolei Sinica, 2015, 36(1): 120–126. doi: 10.7623/syxb201501015
|
[25] |
史肖燕,周英操,赵莉萍,等. 精细控压钻井过程中溢流的模拟和控制[J]. 石油机械,2019,47(5):24–30.
SHI Xiaoyan, ZHOU Yingcao, ZHAO Liping, et al. Influx simulation and control during managed pressure drilling[J]. China Petroleum Machinery, 2019, 47(5): 24–30.
|
[26] |
吴鹏程,徐朝阳,孟英峰,等. 窄安全密度窗口地层钻井起下钻井底压力瞬态波动规律[J]. 钻采工艺,2016,39(4):22–25. doi: 10.3969/J.ISSN.1006-768X.2016.04.07
WU Pengcheng, XU Chaoyang, MENG Yingfeng, et al. Laws of bottomhole transient pressure fluctuation during tripping in narrow safety density window formation[J]. Drilling & Production Technology, 2016, 39(4): 22–25. doi: 10.3969/J.ISSN.1006-768X.2016.04.07
|
1. |
张赫. 低压气井泡沫压井液体系的构建及应用. 精细石油化工进展. 2023(06): 18-25 .
![]() | |
2. |
罗有刚,巨亚锋,王尚卫,杨义兴,江智强,王嘉鑫. 纳米复合泡沫凝胶修井液的研制与试验. 钻井液与完井液. 2020(01): 127-132 .
![]() | |
3. |
赵全民,李燕,刘浩亚,何青水,唐文泉. SXJD-Ⅰ型低伤害暂堵修井液技术. 石油钻探技术. 2019(02): 109-113 .
![]() | |
4. |
朱方辉,李明星,贺炳成,刘伟,李琼玮. 碳酸盐岩储层压井液漏失影响因素研究. 钻井液与完井液. 2019(04): 522-528 .
![]() | |
5. |
韩芳. 深层低渗复杂油气藏防漏失修井液技术. 化工管理. 2018(20): 145-146 .
![]() | |
6. |
王晓军. 新型低固相油基钻井液研制及性能评价. 断块油气田. 2017(03): 421-425 .
![]() | |
7. |
吴爽. 辽河油田无固相强抑制水基钻井液技术. 石油钻探技术. 2017(06): 42-48 .
![]() | |
8. |
王广财,钱峰,高利民,方卫荣,张云达,王小龙,刘万成. 无固相低密度油基泡沫修井液性能评价与应用. 油田化学. 2017(04): 711-716 .
![]() | |
9. |
王晓军. 抗温抗盐无固相微泡沫钻井液研制与现场应用. 石油钻探技术. 2016(02): 58-64 .
![]() | |
10. |
陶磊,李松岩,程时清. 稠油油藏水平井泡沫酸解堵技术. 石油钻探技术. 2015(06): 76-80 .
![]() |