Citation: | FENG Ding, LIANG Jinli, WANG Jiangang, et al. Construction and application demonstration of digital twin technology system for oil and gas equipment [J]. Petroleum Drilling Techniques, 2025, 53(2):1−10. DOI: 10.11911/syztjs.2025002 |
The integration of oil and gas equipment with digital twin technology represents a pivotal advancement towards achieving unmanned, intelligent, and cost-effective drilling and development projects in the oil and gas sector. This study focuses on digital twin technology tailored for oil and gas equipment, aiming to enable functionalities such as behavior monitoring and performance evaluation under challenging operational conditions and environments. Grounded in digital twin theory, the relationship between various systems of oil and gas equipment was considered. By utilizing the description method of multi-disciplinary, multi-level, and multi-physical field coupling, a set of process systems of digital twin technology application for oil and gas equipment based on structural performance response and real-time data mapping was constructed. By taking the rack and pinion drilling rig as the research object, a digital twin of the hoisting system of the rack and pinion drilling rig based on multi-system, multi-scale, and multi-factor modeling criteria was established. The reliability of theoretical research was verified by application demonstration, which provided a set of application theories based on digital twin technology for performance evaluation and life prediction of equipment in oil and gas and related fields.
[1] |
张来斌,汪征,蔡永军,等. 油气储运信息物理系统安全:内涵及关键技术[J]. 石油学报,2023,44(6):902–916. doi: 10.7623/syxb202306002
ZHANG Laibin, WANG Zheng, CAI Yongjun, et al. Cyber-physical system safety for oil and gas storage and transportation: Connotations and key technologies[J]. Acta Petrolei Sinica, 2023, 44(6): 902–916. doi: 10.7623/syxb202306002
|
[2] |
冯定,王健刚,张红,等. 数字孪生技术在油气钻完井工程中的应用与思考[J]. 石油钻探技术,2024,52(5):26–34. doi: 10.11911/syztjs.2024095
FENG Ding, WANG Jiangang, ZHANG Hong, et al. Application and prospect of digital twin in oil and gas drilling & completion engineering[J]. Petroleum Drilling Techniques, 2024, 52(5): 26–34. doi: 10.11911/syztjs.2024095
|
[3] |
李培根,高亮. 智能制造概论[M]. 北京:清华大学出版社,2021:405.
LI Peigen, GAO Liang. Introduction to intelligent manufacturing[M]. Beijing: Tsinghua University Press, 2021: 405.
|
[4] |
洪腾蛟,丁凤娟,王鹏,等. 深度学习在轴承故障诊断领域的应用研究[J]. 科学技术与工程,2021,21(22):9203–9211. doi: 10.3969/j.issn.1671-1815.2021.22.003
HONG Tengjiao, DING Fengjuan, WANG Peng, et al. Application of deep learning in bearing fault diagnosis[J]. Science Technology and Engineering, 2021, 21(22): 9203–9211. doi: 10.3969/j.issn.1671-1815.2021.22.003
|
[5] |
许凤华,向正新,施雷,等. 基于偏载作用下的齿轮齿条啮合仿真研究[J]. 石油机械,2019,47(5):50–55.
XU Fenghua, XIANG Zhengxin, SHI Lei, et al. Simulation on rack and pinion meshing based on eccentric load[J]. China Petroleum Machinery, 2019, 47(5): 50–55.
|
[6] |
冯定,亢博文,施雷,等. 大模数重载齿轮齿条接触强度分析[J]. 石油机械,2018,46(8):14–19.
FENG Ding, KANG Bowen, SHI Lei, et al. Analysis of contact strength of large module heavy load rack and pinion[J]. China Petroleum Machinery, 2018, 46(8): 14–19.
|
[7] |
陈荣旗. 海洋油气生产装备智能制造发展现状及前景展望[J]. 中国海上油气,2020,32(4):152–157.
CHEN Rongqi. Current development status and prospects of the intelligent manufacturing of offshore oil and gas production equipment[J]. China Offshore Oil and Gas, 2020, 32(4): 152–157.
|
[8] |
RIVERA D A J, BOHORQUEZ GUTIERREZ J R, DONTSOVA E, et al. How deep learning can provide consistent improvement on ROP through different drilling environments[R]. SPE 208743, 2022.
|
[9] |
KOFFI I U, LIVINUS A. Prediction of drift velocity closure relationship in multiphase flow models using deep learning approach[R]. SPE 211926, 2022.
|
[10] |
SUN Yuantao, LUO Lifu, CHEN Kaige, et al. A time-domain method for load identification using moving weighted least square technique[J]. Computers & Structures, 2020, 234: 106254.
|
[11] |
YANG Hongji, JIANG Jinhui, CHEN Guoping, et al. Dynamic load identification based on deep convolution neural network[J]. Mechanical Systems and Signal Processing, 2023, 185: 109757. doi: 10.1016/j.ymssp.2022.109757
|
[12] |
寇文龙,李凤华,董秀则,等. 支持差异化可协商的数据通信机制[J]. 通信学报,2021,42(10):55–66. doi: 10.11959/j.issn.1000-436x.2021183
KOU Wenlong, LI Fenghua, DONG Xiuze, et al. Differentiated and negotiable mechanism for data communication[J]. Journal on Communications, 2021, 42(10): 55–66. doi: 10.11959/j.issn.1000-436x.2021183
|
[13] |
宋学官,来孝楠,何西旺,等. 重大装备形性一体化数字孪生关键技术[J]. 机械工程学报,2022,58(10):298–325. doi: 10.3901/JME.2022.10.298
SONG Xueguan, LAI Xiaonan, HE Xiwang, et al. Key technologies of shape-performance integrated digital twin for major equipment[J]. Journal of Mechanical Engineering, 2022, 58(10): 298–325. doi: 10.3901/JME.2022.10.298
|
[14] |
WEI Yongli, HU Tianliang, YUE Pengjun, et al. Study on the construction theory of digital twin mechanism model for mechatronics equipment[J]. The International Journal of Advanced Manufacturing Technology, 2024, 131(11): 5383–5401. doi: 10.1007/s00170-022-09144-w
|
[15] |
TAO Fei, ZHANG He, LIU Ang, et al. Digital twin in industry: state-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2405–2415. doi: 10.1109/TII.2018.2873186
|
[16] |
LIU Qiang, ZHANG Hao, LENG Jiewu, et al. Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system[J]. International Journal of Production Research, 2019, 57(12): 3903–3919. doi: 10.1080/00207543.2018.1471243
|
[17] |
陶飞,刘蔚然,刘检华,等. 数字孪生及其应用探索[J]. 计算机集成制造系统,2018,24(1):1–18.
TAO Fei, LIU Weiran, LIU Jianhua, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1–18.
|
[18] |
冯定,唐海雄,周魁,等. 模块钻机的现状及发展趋势[J]. 石油机械,2008,36(9):143–147.
FENG Ding, TANG Haixiong, ZHOU Kui, et al. The status quo and development trend of modularized drilling rig[J]. China Petroleum Machinery, 2008, 36(9): 143–147.
|
[19] |
马晓茜,王辉,蔡长韬,等. 复杂机电产品多层级模块化设计方法的研究与应用[J]. 机械设计,2018,35(8):80–85.
MA Xiaoxi, WANG Hui, CAI Changtao, et al. Research and application on the multi-level module design for complex electromechanical products[J]. Journal of Machine Design, 2018, 35(8): 80–85.
|
[20] |
强以铭,陈诗楠,陈奕宏,等. 基于机器学习的船舶螺旋桨敞水性能预报代理模型[J]. 中国造船,2022,63(5):181–188. doi: 10.3969/j.issn.1000-4882.2022.05.017
QIANG Yiming, CHEN Shinan, CHEN Yihong, et al. Prediction of open-water characteristics of ship propellers based on machine learning surrogate model[J]. Shipbuilding of China, 2022, 63(5): 181–188. doi: 10.3969/j.issn.1000-4882.2022.05.017
|
[21] |
赵航,童水光,朱郑州. 基于数据学习的结构静力学性能预测方法[J]. 计算机科学,2022,49(4):140–143. doi: 10.11896/jsjkx.210300238
ZHAO Hang, TONG Shuiguang, ZHU Zhengzhou. Prediction method of structural static performance based on data learning[J]. Computer Science, 2022, 49(4): 140–143. doi: 10.11896/jsjkx.210300238
|
[22] |
WANG Jiangang, SHI Lei, FENG Ding, et al. Study the muti-bolt fastening under different load positions in gear rack drilling rig[J]. PLoS One, 2023, 18(8): e0290427. doi: 10.1371/journal.pone.0290427
|
[23] |
SHARMA A, SONGCHITRUKSA P, SINHA R R. Integrating domain knowledge with machine learning to optimize electrical submersible pump performance[R]. SPE 208972, 2022.
|
[24] |
徐建明,潘湘飞. 基于Socket通信的工业机器人监控系统研究[J]. 计算机测量与控制,2017,25(7):70–73.
XU Jianming, PAN Xiangfei. Research of industrial robot monitoring system based on socket communication[J]. Computer Measurement & Control, 2017, 25(7): 70–73.
|
[25] |
TAO Fei, SUN Xuemin, CHENG Jiangfeng, et al. makeTwin: a reference architecture for digital twin software platform[J]. Chinese Journal of Aeronautics, 2024, 37(1): 1–18.
|
[26] |
WU Pengfei, QI Mengjia, GAO Lingyan, et al. Workshop heterogeneous equipment information perception analysis system[C]//2019 11th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). Piscataway, NJ: IEEE Press, 2019: 3–7.
|
[27] |
王艳青,闫月晖,马嵩华,等. 滚动轴承数字孪生几何模型精细建模[J]. 计算机集成制造系统,2023,29(6):1882–1893.
WANG Yanqing, YAN Yuehui, MA Songhua, et al. Fine modeling method of digital twin geometric model for rolling bearing[J]. Computer Integrated Manufacturing Systems, 2023, 29(6): 1882–1893.
|
[28] |
周文会,李龙,罗良,等. ZJ40CDY斜井齿轮齿条钻机液压顶驱的研制[J]. 石油机械,2019,47(3):24–28.
ZHOU Wenhui, LI Long, LUO Liang, et al. Hydraulic top drive system on ZJ40CDY rack and pinion rig for inclined wells[J]. China Petroleum Machinery, 2019, 47(3): 24–28.
|
[29] |
赵建军,丁建完,周凡利,等. Modelica语言及其多领域统一建模与仿真机理[J]. 系统仿真学报,2006,18(增刊2):570–573.
ZHAO Jianjun, DING Jianwan, ZHOU Fanli, et al. Modelica and its mechanism of multi-domain unified modeling and simulation[J]. Journal of System Simulation, 2006, 18(supplement 2): 570–573.
|
[30] |
王文尔,张军帅,尹永晶,等. 2 000 m全液压齿轮齿条钻机[J]. 石油机械,2011,39(2):58–60.
WANG Wener, ZHANG Junshuai, YIN Yongjing, et al. 2,000 m fully hydraulic gear and rack drilling rig[J]. China Petroleum Machinery, 2011, 39(2): 58–60.
|
[31] |
江献良,陈凌宇,郑杰基,等. 基于数字孪生模型的直驱部件高精度控制方法[J]. 机械工程学报,2021,57(17):98–109. doi: 10.3901/JME.2021.17.098
JIANG Xianliang, CHEN Lingyu, ZHENG Jieji, et al. High-precision control method of direct drive components based on digital twin model[J]. Journal of Mechanical Engineering, 2021, 57(17): 98–109. doi: 10.3901/JME.2021.17.098
|
[32] |
韩旭. 基于数值模拟的设计理论与方法[M]. 北京:科学出版社,2015:52-60.
HAN Xu. Numerical simulation-based design: theory and me-thods[M]. Beijing: Science Press, 2015: 52-60.
|
[33] |
GUYAN R J. Reduction of stiffness and mass matrices[J]. AIAA Journal, 1965, 3(2): 380. doi: 10.2514/3.2874
|
[34] |
GRIMME E J. Krylov projection methods for model reduction[D]. Urbana, IL: University of Illinois at Urbana-Champaign, 1997.
|
[35] |
WILSON E L, YUAN Mingwu, DICKENS J M. Dynamic analysis by direct superposition of Ritz vectors[J]. Earthquake Engineering & Structural Dynamics, 1982, 10(6): 813–821.
|
[36] |
ROWLEY C W, COLONIUS T, MURRAY R M. Model reduction for compressible flows using POD and Galerkin projection[J]. Physica D: Nonlinear Phenomena, 2004, 189(1/2): 115–129.
|
[1] | ZHAO Xiuwen, YIN Hu, LI Qian. Architecture of a Digital Twin-Based Adaptive Control System for Drilling Parameters[J]. Petroleum Drilling Techniques, 2024, 52(5): 163-170. DOI: 10.11911/syztjs.2024092 |
[2] | WANG Junze, LI Qian, YIN Hu. Architecture of Intelligent Early Warning System for Complex Drilling Risks Based on Digital Twin Technology[J]. Petroleum Drilling Techniques, 2024, 52(5): 154-162. DOI: 10.11911/syztjs.2024082 |
[3] | FENG Ding, WANG Jiangang, ZHANG Hong, SUN Qiaolei, HOU Lingxia, MIAO Enming. Application and Prospect of Digital Twin in Oil and Gas Drilling & Completion Engineering[J]. Petroleum Drilling Techniques, 2024, 52(5): 26-34. DOI: 10.11911/syztjs.2024095 |
[4] | SONG Xianzhi, LI Gensheng, ZHU Zhaopeng, MA Baodong, ZHANG Ziyue. Research Status and Development Trend of Drilling Digital Twin Technology[J]. Petroleum Drilling Techniques, 2024, 52(5): 10-19. DOI: 10.11911/syztjs.2024096 |
[5] | QIN Saibo, YI Xianzhong, CAI Xingxing, ZHANG Xuwen, WANG Lijun, ZHANG Xiliang. Development and Safety Research of Dead Line Anchors for JGZ97 10 000-Meter Ultra-Deep Well Drilling Rig[J]. Petroleum Drilling Techniques, 2024, 52(2): 236-242. DOI: 10.11911/syztjs.2024036 |
[6] | ZHANG Haolin, YANG Chuanshu, LI Changsheng, WANG Guo, DUAN Jinan. Design and Research Practice of a Drilling Digital Twin System[J]. Petroleum Drilling Techniques, 2023, 51(3): 58-65. DOI: 10.11911/syztjs.2023011 |
[7] | YANG Chuanshu. Exploration for the Application of Digital Twin Technology in Drilling Engineering[J]. Petroleum Drilling Techniques, 2022, 50(3): 10-16. DOI: 10.11911/syztjs.2022068 |
[8] | HUANG Jiagen, WANG Haige, JI Guodong, ZHAO Fei, MING Ruiqing, HAO Yalong. The Rock Breaking Mechanism of Ultrasonic High Frequency Rotary-Percussive Drilling Technology[J]. Petroleum Drilling Techniques, 2018, 46(4): 23-29. DOI: 10.11911/syztjs.2018097 |
[9] | Han Feng, Gu Lei, Cui Xiaojie, Li Fuping, Ruan Chenliang, Feng Bin. Mechanical Model for Setting the Liner Hanger with Embedded Slips[J]. Petroleum Drilling Techniques, 2015, 43(6): 103-107. DOI: 10.11911/syztjs.201506019 |
[10] | Chen Cheng, Yao Xiao, Wu Mingming, Song Jinbo. Interface Mechanical Model of Mineral Fiber-Resin Coated Sand[J]. Petroleum Drilling Techniques, 2014, 42(4): 86-90. DOI: 10.3969/j.issn.1001-0890.2014.04.016 |
1. |
肖沣峰,杨丽丽,吴家乐,冯尚江,邱士鑫,蒋官澄. 蓖麻油基环保水性聚氨酯成膜剂CWPU. 钻井液与完井液. 2025(02): 201-208 .
![]() | |
2. |
宋瀚轩,叶艳,郑连杰,孙振玮,周童,张謦文. 钻井液微纳米封堵性能评价方法研究进展. 应用化工. 2024(02): 383-385 .
![]() | |
3. |
李成,李伟,王波,张文哲,李锦锋,王军,常世豪. 微纳米孔缝封堵评价方法研究进展与展望. 科技通报. 2023(01): 18-24+31 .
![]() | |
4. |
孙志刚,李骏函,孙明杰,张茂稳,王立锋. 梨树断陷致密承压封堵钻井液技术研究. 广州化工. 2023(04): 186-188 .
![]() | |
5. |
李雨洋. 钻井液封堵性能对泥页岩井壁稳定的影响研究. 石化技术. 2023(05): 148-150 .
![]() | |
6. |
侯杰,谷玉堂,刘兴君,李浩东,李细鸿. 太阳页岩气田海坝区块安全钻进钻井液技术. 采油工程. 2023(01): 44-49+84 .
![]() | |
7. |
尹家峰,王晓军,鲁政权,步文洋,孙磊,景烨琦,孙云超,闻丽. 辽河大民屯凹陷页岩油储层强封堵恒流变油基钻井液技术. 特种油气藏. 2023(04): 163-168 .
![]() | |
8. |
付毓伟,罗兵,叶政蔚,肖鹏. 水基钻井液用泥页岩抑制剂研究探讨. 石化技术. 2023(11): 177-179 .
![]() | |
9. |
潘永强,张坤,于兴东,王洪月,陈赓,李浩东. 松辽盆地致密油水平井提速技术研究与应用. 石油工业技术监督. 2023(12): 33-38 .
![]() | |
10. |
侯杰,尹华洲,刘兴君,杨斯超. 钻采工程钻井液概算编制方法优化设计. 采油工程. 2023(04): 62-64+76 .
![]() | |
11. |
司西强,王中华,吴柏志. 中国页岩油气水平井水基钻井液技术现状及发展趋势. 精细石油化工进展. 2022(01): 42-50 .
![]() | |
12. |
徐志勇. 高性能水基钻井液技术研究进展. 西部探矿工程. 2022(05): 76-77+79 .
![]() | |
13. |
崔磊,董明,石昌森,郭金玉,李艳军,李英武. 高性能仿油基钻井液在L26-PX井的应用. 西部探矿工程. 2022(07): 68-69+73 .
![]() | |
14. |
何剑平. 水基钻井液用泥页岩抑制剂研究现状. 西部探矿工程. 2022(08): 83-84+87 .
![]() | |
15. |
徐浩,谢鑫,唐玉华,王媛媛,金晶. 疏水型高性能水基钻井液在YC1侧水平井中的应用研究. 精细石油化工进展. 2022(04): 6-10 .
![]() | |
16. |
施连海,李春吉. 威HX-4井水平段钻进技术研究与应用. 辽宁化工. 2022(11): 1647-1649+1653 .
![]() | |
17. |
殷柏涛. 大庆油田致密油藏钻井液技术发展历程. 西部探矿工程. 2022(10): 103-105+108 .
![]() | |
18. |
王伟吉. 基于石墨烯修饰的超低渗透成膜剂制备及性能评价. 石油钻探技术. 2021(01): 59-66 .
![]() | |
19. |
盛勇,叶艳,朱金智,宋瀚轩,张震,周广旭,王涛. 内核纳米乳液用于塔西南地区钻井液的优化. 钻井液与完井液. 2021(02): 170-175 .
![]() | |
20. |
侯杰,李浩东,于兴东,杨决算. 松辽盆地陆相致密油井壁失稳机理及钻井液对策. 钻井液与完井液. 2021(05): 598-604 .
![]() | |
21. |
李发华. 大庆油田中浅层水平井水基钻井液技术研究与应用. 西部探矿工程. 2020(03): 121-124 .
![]() | |
22. |
荣鹏飞. 高性能钻井液技术在大庆QP-X5井中的应用. 西部探矿工程. 2020(03): 71-73 .
![]() | |
23. |
王晓军,白冬青,孙云超,李晨光,鲁政权,景烨琦,刘畅,蒋立洲. 页岩气井强化封堵全油基钻井液体系——以长宁—威远国家级页岩气示范区威远区块为例. 天然气工业. 2020(06): 107-114 .
![]() | |
24. |
左富银,苏俊霖,李立宗,赵洋,曾意晴. 有机纳米封堵剂的研究现状及存在问题分析. 化学世界. 2020(11): 733-737 .
![]() | |
25. |
左富银,苏俊霖,黄进军,李立宗,赵洋,秦祖海. 泥页岩微裂缝微观封堵模拟. 化学世界. 2020(12): 822-828 .
![]() | |
26. |
高锐. 大庆油田致密油藏开发钻井提速技术浅析. 石油工业技术监督. 2019(01): 54-57 .
![]() | |
27. |
曾文韬,许明标,由福昌. 泥页岩纳—微米微孔隙封堵评价方法. 能源与环保. 2019(03): 73-76+160 .
![]() | |
28. |
刘卫东,朱晓虎,蒋文海,樊萍,王悦和,都炳锋. 页岩微裂缝模拟实验评价. 钻采工艺. 2019(02): 104-107+7 .
![]() | |
29. |
苗立生. 强抑制强封堵水基钻井液在大庆致密油藏的应用. 西部探矿工程. 2019(06): 93-96 .
![]() | |
30. |
吴迪. 超低压地层防漏堵漏技术研究与应用. 西部探矿工程. 2019(06): 103-106 .
![]() | |
31. |
张仁彪. 大庆中浅层低成本水基钻井液技术研究与应用. 石油石化节能. 2019(07): 11-14+2 .
![]() | |
32. |
刘永贵. 大庆致密油藏水平井高性能水基钻井液优化与应用. 石油钻探技术. 2018(05): 35-39 .
![]() | |
33. |
杨丽,唐清明,兰林,夏海英,牛静,黄璜. 一种页岩封堵性评价测试方法. 钻井液与完井液. 2018(05): 50-54 .
![]() |